
Journal of Musculoskeletal Surgery and Research • Volume 5 • Issue 3 • July-September 2021  |  142 

Review Article

Biomaterials and technologies in the management of 
periprosthetic infection after total hip arthroplasty: An 
updated review
Ahmed A. Khalifa, MD., FRCS.1 , Hatem M. Bakr, MD.2, Osama A. Farouk, MD.2

1Department of Orthopedics, Qena Faculty of Medicine and University Hospital, South Valley University, Qena, 2Department of Orthopedics and 
Traumatology, Assiut University Hospital, Assiut, Egypt.

INTRODUCTION

“Infection after total joint replacement is a devastating and life-threatening complication for the 
patient,” Sculco.[1] Periprosthetic joint infection (PJI) is considered one of the leading causes for 
revision total hip arthroplasty (RTHA),[2-5] and its management is associated with a considerable 
economic and financial burden.[6] The microorganisms source causing PJI could originate from 
the patient’s own flora or an external source such as the operative room environment or surgical 
instruments; surprisingly, a low volume of microorganisms is needed to establish infection.[7] 
“The race for the surface” starts after implanting a biomaterial where competition between the 
host and the microorganisms to occupy the implant surface (colonization); the problems start 
when the bacteria adhere to the implant with an immediate formation of a “biofilm” leading to 
extreme resistance of the microorganisms to the host’s defense mechanisms and antimicrobial 
therapy.[8] It had been estimated that about 80% of the bacteria species are capable of biofilm 
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formation, including Staphylococcus aureus, Streptococcus, 
Staphylococcus epidermidis, and Pseudomonas.[9] For total 
hip arthroplasty (THA) to be infected, the microorganism’s 
ability to attach to the implant’s surface depends on various 
factors, such as the microorganism virulence, nutrient 
availability, the patient immune system competency, and 
implant-related factors as material surface chemical and 
physical characteristics.[10]

The strategies for preventing and competing for infection 
occupy the whole perioperative stages; it starts from the 
preoperative phase, such as patient optimization and 
antibiotic prophylaxis administration, some intraoperative 
strategies including some maneuvers related to the 
prevention and inhibition of microorganism adhesions to 
the implants through implant surface modifications such as 
antibiotic-loaded hydroxyapatite (HA), nanosilver particles, 
and antiseptic-based coatings, and in the care in post-
operative phase by application of proper surgical dressings 
and watchful wound care.[7,11]

The issues related to the pathogenesis of PJI, development 
and updates in the biomarkers used for detecting PJI, and 
the various surgical techniques used for PJI eradication, 
had been reported extensively in the literature;[7,9,12] in this 
review, we aimed at discussing some of the advancement 
and updates related to biomaterials and technologies used 
for managing PJI.

WHY THA FAIL RECENTLY?

Although advancements in THA implants and techniques 
made this procedure one of the most successful surgical 
interventions introduced in the past decade, failure due to 
several reasons still occurring and understanding the failure 
reasons will help improve survival rates.[13] THA revision’s 
main three reasons had been attributed alternatively to 
aseptic loosening, instability, and PJI in various studies.[2-5] 
The United  Kingdom National Joint Registry reported the 
same three reasons for a re-revision surgery as well.[14] In 
contrast, PJI was reported as the leading cause of failure both 
in revision and re-revision THA according to the Swedish 
joint registry.[15] In the following, we will report on different 
strategies and developments made in various aspects of 
THA surgery to prevent or reduce the occurrence of PJI. 
In addition, issues related to bearing surfaces, biomaterials 
updates, and hints on the newly developed technologies will 
be discussed.

ROLE OF BEARING SURFACES

For THA, the bearing surfaces could be classified into two 
major categories, first is the hard-on soft bearings, including 
metal head-on polyethylene acetabular cup (MoP) or 
ceramic-on-polyethylene (CoP) bearings.[16] The polyethylene 

used as a soft bearing could be either conventional, ultrahigh 
high-molecular-weight polyethylene (UHMWPE),[17] cross-
linked polyethylene (XLPE),[18] and highly cross-linked 
polyethylene (HXLPE).[19] Second is the hard-on hard 
bearings, including either the metal on metal (MOM), which 
was limited due to the issue of aseptic lymphocyte-dominated 
vasculitis-associated lesions,[20] ceramic-on-ceramic (CoC) 
bearings, which may include either the use of alumina, 
zirconia, or zirconia toughened alumina,[21] and ceramic on 
metal where a ceramic femoral head is articulating with a 
metal acetabular liner.[22]

Regarding the orthopedic implants, HXLPE showed the 
highest bacterial adherence levels followed by titanium, 
stainless, and trabecular metal; this adherence is affected by 
physical implant characteristics such as the surface roughness 
and the implant chemical structure.[23]

Regarding if the bearing surface influenced the incidence of 
PJI, several studies evaluated this relation, as in a systematic 
review by Hexter et al., where they evaluated 17 studies 
to compare the incidence of PJI among different bearing 
surfaces, mainly MoP, CoP, and CoC, the authors reported 
an incidence of PJI with the three bearing couples of MoPs 
0.85%, 0.38%, and 0.53%, respectively, with no significant 
difference between the three groups. Therefore, the authors 
concluded that the idea that a bearing couple will affect the 
incidence of PJI is not supported.[24]

On the contrary, in the study by Bordini et al. including 
data of 39,206 cementless THA to examine the effect of the 
bearing surface on the incidence of PJI, the authors showed 
that the lowest incidence was reported with the CoC bearing 
couple while the highest incidence occurred with MoM 
bearings, the authors concluded that bearing surface may 
influence the occurrence of PJI.[10]

A study by Madanat et al. evaluating PJI risk with different 
bearing surfaces after examining 177,237 primary THA 
surgeries from the Australian Registry (AOANJRR). The 
authors reported on three bearing surfaces MoHXLPE, 
CoHXLPE, and CoC; they found that the former two 
bearings had a higher revision rate for PJI compared to 
CoC.[25] The same conclusion derived from the previous 
study was reported in a study by Pitto et al. after evaluating 
about 98,000 hips from the New Zealand Joint Registry.[26]

How improving the bearing surface can affect PJI?

Vitamin E was introduced as a blend to stabilize polyethylene 
by reducing free radicals’ production; it showed the 
ability to prevent the oxidation cascade without affecting 
polyethylene’s mechanical properties.[27] Furthermore, 
implementing Vitamin E in the material used as bearing 
surfaces showed its ability to improve the vulnerability of the 
implanted UHMWPE to infections.[28] In a study by Gomes-
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Barrena et al. and after 90 min of incubation, they compared 
the adherence of S. aureus and S. epidermidis on conventional 
UHMWPE with and without Vitamin E blending, they found 
no significant difference in adherence when all strains were 
analyzed together. However, the authors found high variation 
when strains were analyzed separately as they found that 
one of the S. epidermidis strains showing significantly less 
adhesion to Vitamin E-blended UHMWPE. The authors 
explained this as Vitamin E increased the implant surface 
hydrophobicity with a decrease in the surface free energy, 
which might play a role in lowering the bacterial surface 
adhesion.[29]

Banche et al. analyzed three S. epidermidis strains growth on 
conventional UHMWPE samples with and without Vitamin 
E blending; they found a significantly less adhesion with the 
Vitamin E-blended samples.[30] In another study, they studied 
the adherence of two S. aureus and two Escherichia coli 
strains,[31] after 48 h of incubation. They found significantly 
fewer bacteria adherence on the Vitamin E-blended 
UHMWPE. The last study was reported on two Candida 
albicans strains and showed less fungal adhesion to Vitamin 
E-blended UHMWPE after incubation for 3, 7, 24, and 
48 h.[32]

From the previously reported studies, it seems that the 
bearing surface may play a role in PJI development, and 
the introduction of a new bearing surface such as Vitamin 
E-blended polyethylene may decrease the incidence of PJI.

ROLE OF BIOMATERIALS

Although the development of PJI in THA is multifactorial, 
including factors related to the patient such as general 
condition (ASA class, comorbidities, and age) and issues 
related to the surgical procedure (approach, length of surgery, 
and indication for surgery), studies evaluating the effect of 
the modifications on materials used in the THA implants 
on development of PJI had been reported.[33] The idea was 
to introduce new local modalities for PJI prevention and 
management by optimizing the implant surfaces to guard 
against biofilm formation and the ability to prolong the 
intra-articular antibiotic release, which should increase the 
potency of bacteria eradication.[12] According to the last peri-
prosthetic joint infections international consensus meeting 
held in 2018, a strong recommendation was made related to 
developing effective local antibacterial surface coatings.[34]

Local hydrogel coatings

The concept of “race for the surface” dictates that the first few 
hours after implantation of the prosthetic material are critical 
for PJI development.[35] Hence originated the idea of local 
coatings applied to the implant surface like the hydrogels. 
Implant coatings with a resorbable hydrogel-containing 

antibiotics (single or combinations) offer optimum 
drug delivery without interfering with osseointegration.
[36] A defensive antibacterial coating (DAC) consisted of 
hyaluronan, poly-D, and L-lactide has the ability to protect 
the biomaterials by performing a barrier at implantation time; 
it is used with antibiotic topically to inhibit early bacterial 
colonization to the implant and biofilm formation,[37] its use 
led to a reduction in early post-operative infection rates after 
TJA.[38] DAC is prepared by mixing 300 mg of hydrogel, 5 mL 
of sterile water, and liquid-based antibiotics according to the 
organism’s sensitivity previously identified in the cultures. 
The mixture is then added directly to the implant surfaces 
about 10 min after mixing.[11]

In vitro studies showed significant reductions in bacteria 
adhesions when used on a sterile titanium disc after being 
coated with the DAC hydrogel.[39] Animal studies showed the 
efficacy of DAC hydrogel loaded with an antibiotic to prevent 
implant-related infection without affecting the bone healing 
or osseointegration of the implants.[40] When DAC was used 
as a standalone device, it led to antibiotic concentrations 
higher than the minimum inhibitory concentration and 
showed an ability of local antibiotics elution up to 3 days.[38]

In the study by Franceschini et al. reporting their early 
experience of using DAC in 28  patients having chronic 
PJI underwent cementless two-stage RTHA with a mean 
follow-up of 2  years, they used vancomycin, rifampicin, or 
cephalosporin commonly as local antibiotics. They reported 
two early failures within the first 3  weeks post-revision 
surgery; the remaining 26  patients did not show signs of 
reinfection (clinical and laboratory) at the last follow-up, they 
also reported no implant loosening or ingrowth failure.[11]

Silver (Ag)-based technologies

The implication of silver in the battle with PJI had 
various shapes as it could be used as an implant coating 
nanoparticles;[41] it was incorporated in the wound dressings, 
which proved efficacy against bacterial infection,[42,43] and 
could be loaded to the PMMA when it will be used either for 
primary implant fixation or as a spacer during the two stages 
revision surgeries.[44] Its efficacy in reducing the incidence of 
PJI had been proved in some observational studies, even in 
oncological patients.[45,46] The amount of effectively liberated 
silver ions to the surrounding tissues to serve its antibacterial 
function depends on the layer thickness, concentration, and 
the way of its application to the surface.[47] The liberated 
silver ions act on bacteria by destroying the peptidoglycan 
membranes, initiating DNA condensation and ribosome 
denaturation.[48]

An improvement on silver nanoparticles was introduced 
by incorporating it into HA and chitosan to produce an 
antibacterial coating with osseointegration promoting 
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characteristics; it showed its efficacy in reducing the 
microorganism (E. coli and S. aureus) concentration around 
the implant by about 90%.[49]

Silver nanoparticles combined with titanium dioxide were 
proposed to function as antibacterial coatings as well as 
anticorrosive; however, their safety for clinical use is still to 
be proven.[50]

Silver nanoparticles incorporated in implant coatings

These were introduced as an alternative to nanotubes and 
drug-eluting antibacterial coatings and are considered as 
common non-antibiotic antibacterial coatings.[51] It showed 
activity against several bacterial species such as S. aureus 
and E. coli without negatively affecting the surrounding 
osteoblasts.[52]

Hardes et al. carried a prospective case–control study to 
investigate the efficacy of using the Mutars silver-coated 
implant (Implantcast, Buxtehude, Germany). They compared 
51 patients diagnosed with bone sarcomas who were treated 
by replacing either the proximal femur or the proximal tibia 
using Mutars implant with a control group of 74 patients who 
received uncoated megaprostheses; the authors reported that 
the infection incidence with the silver-coated implant was 
5.9% compared to 17.6% with the uncoated implant.[53]

In a retrospective study by Wafa et al., the authors 
demonstrated that when using tumor prosthesis, silver-
coated implants provided effectiveness in reducing the 
early post-operative infection in oncological patients or as a 
second-stage revision after PJI.[54] However, on the contrary, 
Zajonz et al. stated a limited role of the silver-coated implants 
in preventing infection in patients who underwent a revision 
for PJIs,[55] with the added possible risk of silver cytotoxicity, 
inability to coat the whole implant, and the possible high 
cost.[56]

Wang et al. tested a relatively new technology of silver 
nanoparticles embedded in titania nanotubes forming a 
contact-killing surface. They incorporated vancomycin 
into the nanotubes to provide the release-killing effect. 
They developed an in vitro and in vivo (Rabbit) PJI model 
involving methicillin-resistant S. aureus (MRSA) to 
evaluate the antibacterial properties of the hybrid surface 
technology against planktonic (in body fluids) and sessile (on 
implant surface) bacteria. The authors reported acceptable 
antimicrobial and antibiofilm effects against both types of 
bacteria without considerable silver ion release.[57]

Silver incorporated in surgical wound dressing

A sliver containing dressing is the Aquacel Ag Hydrofiber 
dressings which act as an antimicrobial dressing composed 
of weaved cellulose center which when used will follow the 

contour of the area where it is applied and eliminate any dead 
space, absorbs exudates, and the release of silver ions which 
mainly will suppress the bacterial activity and help with 
wound healing.[58]

Grosso et al. in a retrospective study that included 1173 
TJA patients, where the authors used Aquacel dressing 
in 568  patients and the standard gauze dressing or sterile 
Xeroform dressing in 568 patients, the incidence of acute PJI 
within the first 3 post-operative months was evaluated, the 
incidence of PJI in the total cohort was 0.94% (11 patients), 
nine patients in the usual dressing group (1.58%) compared 
to only 2 (0.33%) in the Aquacel dressing group. The authors 
reported a statistically significant difference (P = 0.03), 
after running a multiple logistic regression model, Aquacel 
dressing use demonstrated a protective effect with an odds 
ratio of 0.092.[43]

Povidone-iodine coating

Iodine was introduced as an antimicrobial coating for 
titanium hip implants.[59] It offers several advantages, broad 
antimicrobial activity including tubercle bacilli and fungi. It 
is not prone to drug resistance development, biologically safe 
and could be excreted by the kidney. The biological half-life 
is exceedingly long compared to antibiotic or silver coatings, 
and it possesses excellent osteoconduction properties.[59,60]

Kabata et al. reported on 30 THA using iodine-coated 
implants. Indications for surgery were revision for PJI in 14, 
primary THA in 13 patients with immunosuppressive diseases 
or after pyogenic arthritis, and three were hemiarthroplasty 
conversions. The authors reported no signs of infection in any 
patients after a mean follow-up of 33 months, no cytotoxicity, 
no thyroid function abnormalities, and excellent implant 
ingrowth and ongrowth with no signs of loosening.[61]

However, some drawbacks were suggested using iodine 
coatings, mainly cost-related issues as its preparation is 
time consuming, only used with titanium implants, and the 
implant size should be determined before surgery which 
dictates precise preoperative planning.[61]

NEW AND FUTURE TECHNOLOGIES

After successful biofilm formation by the microorganism, it 
becomes resistant to mild pH changes. Further use of local 
antiseptics such as hydrogen peroxide, povidone-iodine, 
and sodium hypochlorite will be ineffective; an example is S. 
aureus biofilms which showed the ability to survive even after 
local antiseptics application.[62] Therefore, the following are 
the new strategies suggested for dealing with PJI, targeting 
the biofilm, and dealing with the dormant and resistant 
bacterial strains.
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Cyclodextrin-based drug delivery

Cyclodextrin is a cyclic oligosaccharide cross-linked with 
an insoluble polymer; it facilitates a prolonged controlled 
drug release through the formation of inclusion complexes 
with “pockets.”[63] It had been incorporated into several 
other surgical implants, such as hernia meshes, and vascular 
grafts or stents, for the sake of delivering antibiotics over a 
more extended period.[12] Taha et al. loaded tobramycin 
and rifampicin in combination on a grafted cyclodextrin 
onto HA-coated titanium hip implants, aiming to have a 
dual drug delivery system to work against S. aureus and 
Enterobacter cloacae; they found that this delivery system 
provided sustained release of both antibiotics.[64] The authors 
also proved the antibacterial activity of gentamicin-loaded 
plasma-sprayed HA-coated titanium using cyclodextrin.[65]

New antibiotics with boosted penetration power

If an antibiotic can penetrate the bone and articular tissues, 
this was suggested to improve its efficacy against the 
biofilm;[9] two newly FDA-approved antibiotics, oritavancin 
and dalbavancin, showed the ability to interrupt bacterial 
cell wall synthesis and to disrupt bacterial cell membrane.[66] 
Both agents showed activity against Gram-positive bacteria, 
including MRSA, methicillin-sensitive S. aureus (MSSA), 
and vancomycin-resistant S. aureus. Both agents showed 
the capability of penetrating the bone and articular 
tissues;[67] in an in vitro model of PJI, both agents showed 
activity in competing biofilm isolated from S. aureus and S. 
epidermidis.[68] Its wide use limitation is the high cost and the 
selectivity to Gram-positive bacteria only.[9]

Immunotherapy/monoclonal antibodies

Monoclonal antibodies as a modality of immunotherapy 
were suggested to provide an adjunct or even an alternative 
to antibiotics; various investigations are running to assess 
the possible targets of the antibody-based therapies, an 
example is antibodies against staphylococcal adhesins, which 
resulted in inhibiting the microbial adherence to surfaces, 
with an additional increase in microorganism clearance 
through opsonophagocytic killing.[69] Another potential 
target is S. aureus cell wall moiety protein A; the use of 
antibodies targeting this protein showed better opsonization 
of both MRSA and MSSA, leading to possible clearance by 
the immune cells; these agents showed an improved mice 
survival which had MRSA bacteremia both when combined 
with vancomycin and when used alone.[70]

Agents targeting dormant state bacteria

Another new strategy is targeted against the dormant bacteria 
present in the biofilm, called the persister cells (these are 

less active, which makes them more resilient to antibiotics); 
the idea is to stimulate these bacteria to initiate a metabolic 
activity making them more sensitive to antibiotics.[9] In a 
study by Fux et al., they found that a strain of MSSA, when 
present in the biofilm, was resistant to oxacillin even after the 
biofilm dispersion. However, stimulation of the bacteria by 
adding nutrients and fresh media caused sensitivity of the 
MSSA to the antibiotic.[71] A further innovative approach to 
attack the dormant bacteria is to use anticancer drugs, which 
will bind to bacterial DNA and RNA, leading to its unwinding 
with subsequent death of the bacteria, including mitomycin 
C and cisplatin, which have shown effectiveness against 
persister cells.[72] Both drugs had proven to kill the planktonic 
bacteria and persister cells, including various species such as 
E. coli, S. aureus, and Pseudomonas aeruginosa.[73] Kwan et al. 
reported mitomycin C’s efficacy in eradicating infection in an 
in vivo animal and in in vitro wound models, and the authors 
suggested its possible efficacy in treating resistant clinical 
infection.[73] Although anticancer drugs are considered by 
some authors as a choice to enter the “post-antibiotic age,” 
Chowdhury et al. alluded to the possible intrinsic toxicity 
of these drugs when used instead of antibiotics. The authors 
reported that safety could be guaranteed using low doses and 
combining them with antibiotics, and the topical application 
will allow the use of higher concentrations.[72]

Titanium nanotube arrays

The idea is to provide a local antibiotics delivery using 
nanotube arrays processed on titanium’s surface.[12] 
In vitro studies showed a sustained gentamycin release from 
nanotube arrays coated titanium alloy surfaces reaching 
about 11  days.[74] Although this technology appears to be 
appealing to antibiotics delivery and prevention of PJI, its 
effect on titanium surfaces osseointegration requires further 
evaluation.[12]

Polymers

A sustained release of antibiotics through diffusion 
and degradation using synthetic polymers such as 
polycaprolactone, polylactic acid, and polylactic-co-glycolic 
acid (PLGA) has been evaluated in vitro and animal models.[75] 
PLGA was the most studied and showed greater efficacy for 
antibiotic delivery than local delivery with PMMA.[75]

Biodegradable bone graft substitutes

These materials were introduced as an alternative to bone 
cement, such as calcium sulfate, which is commonly used as a 
void filler which could be molded to form radiopaque beads, 
the biodegradable nature (absorbed with 30–60 days) of this 
material is advantageous as another surgery for removal is 
not needed.[12] When loaded with antibiotics, calcium sulfate 
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showed an equivalent or even better elution capabilities than 
PMMA in in vitro studies; another advantage of calcium 
sulfate over PMMA is the lack of high polymerization 
temperature during preparation, making adding of heat-
labile antibiotic possible.[76]

Using antibiotic-loaded calcium sulfate beads showed 
promising results from trauma literature in osteomyelitis 
management, with infection eradication rate up to 86% in 
some reports.[77] For its use in management PJI, Howlin et al. 
showed the ability of these beads to inhibit S. aureus biofilm 
formation when loaded with tobramycin and/or vancomycin, 
but not activity had been shown against the already formed 
biofilm.[78]

However, there is limited evidence to support its regular use 
in the management of PJI. Flierl et al. treated 32 PJI cases 
with debridement, implant retention, and calcium sulfate 
beads, they reported treatment failure incidence of 48%.[79] 
Furthermore, calcium sulfate beads use reported to result 
in possible hypersensitivity reaction presented as persistent 
wound discharge and heterotopic bone formation.[80] Another 
reported complication is hypercalcemia which was reported 
to occur at a rate of 20% in a series of 15 patients treated by 
single-stage revision by Kallala and Haddad.[81]

Bacteriophage therapy

Another possible potential therapy for attacking bacteria 
that reside in the biofilm is “bacteriophages,” these are 
viruses (naturally occurring) that can attack and kill 
bacteria selectively without affecting the human cells; it 
showed activity against active bacteria persister cells.[82] 
Yilmaz et al. assessed bacteriophages’ antimicrobial activities 
in a rat model against MRSA and P. aeruginosa; the 
authors found that it reduced viable bacteria count when 
administered alone, the effect was even more profound when 
combined with antibiotic therapy.[83] In an in vivo study by 
Kaur et al., where the authors investigated bacteriophages 
usage as prophylaxis against MRSA in a PJI, they reported 
that implant coating combining bacteriophages and 
antibiotics gave the best results regarding an initial lowering 
in bacterial adhesion to the implant and fewer bacteria count 
in the adjacent tissues.[84] Furthermore, the bacteriophages 
therapy provides less cross-resistance to antibiotics, minimal 
or no adverse reactions, and the ability to penetrate the 
bacteria, which introduce this therapy as a viable strategy 
combined with antibiotics.[82]

Enzymatic therapy

Through degradation of the extracellular polymeric 
substances, enzymes could improve and augment the 
elimination and eradication of the PJI biofilm by other 
antimicrobial agents.[9] An agent such as dispersion B showed 

complete eradication of biofilm in in vitro studies through 
inhibiting biofilm exopolysaccharide PNAG-producing 
bacteria.[85,86] The proven enzymatic activity against biofilm 
makes it possible for biofilm eradication either if used alone 
or in conjunction with antibiotics.[9,87]

Photodynamic therapy (PDT)

PDT is a strategy in which light and a photosensitizer dye 
(toluidine blue as an example) are used. These dyes could be 
absorbed by bacteria, which is then being activated by oxygen 
and light exposure with a specific wavelength, ultimately 
resulting in free radicals production, causing bacterial 
DNA and plasma membrane damage with subsequent cell 
death.[88] Some studies showed the efficacy of PDT against 
some bacteria species such as MRSA, MSSA, S. epidermidis, 
and P. aeruginosa in a PJI model where mature biofilms 
were grown on either moderately roughened or a polished 
titanium alloy.[89,90] As this strategy proved rapid bactericidal 
behavior with a very low possibility of bacterial resistance 
development, it was suggested to be used for sterilizing the 
infected implant bed and surrounding tissues during revision 
surgery for PJI.[89]

Ultrasound therapy

Low-intensity ultrasound (frequency between 20 and 200 kHz), 
known as sonication, was introduced as a technique for 
improving the accuracy of diagnosis PJI. However, ultrasound 
with a high intensity (frequency more than 1 MHz) was 
introduced as a possible effective technique against bacterial 
biofilms.[91] In an early study by Ensing et al. carried on a rabbit 
model, the authors showed that pulsed ultrasound combined 
with gentamicin reduced E. coli biofilm more than using 
gentamicin alone.[92] Microfractures and hematoma formation 
were among the risks questioned when using a high-intensity 
ultrasound. To avoid this possible risk, Wanner et al.[93] and Yu 
et al.[94] showed in vitro studies that a synergistic effect of using 
a low-intensity ultrasound combined with antibiotics, they 
showed the possibility of eradicating various bacterial species 
such as S. epidermidis, S. aureus, and E. coli biofilms.

Vaccination

The introduction of vaccines as a prophylactic therapy 
against biofilm was suggested as a promising option, which 
works through antibodies targeting specific structures, 
including the cell wall enzymes, biofilm extracellular matrix 
components, and surface cell proteins.[9] Using antibodies 
vaccine showed efficacy against MRSA infection biofilm 
when combined with antibiotic therapy in an animal 
model;[95] however, in clinical application, Fowler et al. 
reported that using a vaccine against S. aureus in patients 
subjected to cardiothoracic surgery did not reduce the rate of 
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infection and was associated with increase mortality rates.[96] 
Further development and improvement are still needed to 
prove the efficacy and safety of vaccines.

Inhibition of quorum sensing

The quorum sensing system is an essential chemical 
signaling pathway through which bacteria communicate 
and cooperate; it also serves as a regulator of certain 
processes such as biofilm formation and secreting virulence 
factors.[97] Inhibition of quorum sensing was introduced 
as a new method for preventing PJI with the possibility 
of reducing biofilm formation, leaving the bacteria more 
susceptible to antibiotics; this inhibition was performed 
through various strategies such as suppressing synthases 
responsible for extracellular signaling molecules production 
or by enzymatic degradation.[9] This technology showed a 
positive effect in clearing P. aeruginosa lung infection and 
improving survival time in an animal model,[98] making 
its use in preventing and curing PJI an appealing option; 
however, data are still deficient in this respect.[9]

CONCLUSION

Management of PJI after THA had evolved over the years 
by introducing new concepts and technologies to prevent 
the occurrence of infection in the first place. The role of 
bearing surfaces had been examined. Although there is some 
conflicting evidence of its effect on the incidence of PJI, the 
use of Vitamin E-blended polyethylene showed fewer bacterial 
adhesions, which may help in reducing the PJI incidence. 
Novel modalities such as surface coatings using DAC or 
silver-containing coatings had been proved to be effective 
against biofilm formation and led to reducing the incidence 
of PJI in both in vivo and in vitro studies. The introduction of 
new concepts and technologies such as the use of new, more 
powerful antibiotics, bacteriophage therapy, immunotherapy, 
vaccines, and ultrasound therapy showed promising results; 
however, its wide adoption in clinical practice still to be proved.
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