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Introduction
Bone fractures are among the most common causes of 
emergency department visits. Diagnostic errors often occur 
due to misinterpretation of radiological examination, which 
may lead to the delayed treatment and poor outcomes.[1] The 
analysis of causes of fracture diagnostic inaccuracies has 
found them to be multifactorial, including physician factors, 
image quality, insufficient clinical information, fracture 
type, and polytrauma.[2] Four out of five diagnostic errors 
in an emergency settings are due to physician factors, yet 
radiographs are often interpreted by clinicians who lack the 
required specialized expertise.[3] Even with an experienced 
radiologist, physician fatigue and error may increase during 
a long busy day, increasing the risk of missing a subtle 
fracture.[4] Thus, a model that can offer assistance to physicians 
presenting second opinions through highlighting concerning 
areas in imaging examination may produce more efficient 
interpretation, standardize quality, and decrease errors. With 
recent advances in deep learning (DL) and computer vision, 
artificial intelligence (AI) may play a significant role in this 
field.

AI is a powerful technology that has demonstrated good 
potential at radiographic image interpretation. While earlier 

levels of AI performance were subhuman, modern versions are 
able to match or even surpass humans’ performance.[5] AI has 
also shown promising results in complex diagnostics in other 
medical specialties such as ophthalmology, dermatology, and 
pathology.[6] The aim of this article is to explore the potential 
of utilizing AI in fracture diagnosis by reviewing the current 
literature on this subject.

Technical Aspects
AI, machine learning  (ML), DL, and convolutional neural 
networking (CNN) are terminology, which often used 
interchangeably  [Figure  1]. AI refers to any skill where a 
machine performs tasks that mimic human intelligence. ML 
is a subfield of AI that enables a machine to learn and improve 
from the experience independently of human action. DL is a 
more specialized subfield of ML, which can analyze more data 
sets transforming the inputs of an algorithm into outputs using 
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the sophisticated computational models such as deep neural 
networks. CNN is evolutional computational technique of DL, 
which can impact the key areas of medicine such as medical 
imaging.[7] CNN is built of computational units called nodes, 
which are analogous to biological brain neurons. Each node 
takes one or more weighted input connections and performs 
mathematical operations resulting in outputs that can pass to 
other connected nodes.

Material and Data Source
Online databases (PubMed and MEDLINE) search was carried 
to find the literature related to AI use in fracture diagnosis. 
The search was carried accordance to preferred reporting 
items for systematic reviews and meta‑analyses statement. 
Keywords included “artificial intelligence,” “deep learning,” 
“machine learning,” and “fracture.” Searches were conducted 
on April 1, 2020, yielding a total of 104 articles from the 
two databases, without applying any restriction on language 
or date of publication  [Figure 2]. An independent reviewer 
performed screening of articles’ titles and abstracts in the 
first reviewing stage, in addition to the titles and abstracts of 
crossover references. The following inclusion criteria were 
used: all levels of evidence and studies on humans. We did not 
place restrictions on the target population, the outcome of the 
disease of interest, or the intended context for using the model. 
We excluded from the search nontraumatic musculoskeletal 
pathologies and conferences abstracts due to incomplete data 
presentation.

Results
The search terms, as described above, identified 216 references 
[Figure  2]. After duplicate removal, 104 articles titles 
and abstracts were screened. Of these 19 full‑text articles 
were assessed independent by both authors for analysis 
eligibility, finally 13 studies satisfied all the inclusion and 
exclusion criteria. A  complete list of included published 

work is provided in Table  1. The application of AI in 
fracture imaging can be classified into four major categories: 
Pathology detection (e.g., calcaneus fracture), segmentation 
(which means automated segmentation of the region of 
interest whereby the irrelevant pixels are cropped out and 
would not influence the training process e.g., cropping out soft 
tissue), classification (e.g., calcaneal fracture classification), 
noninterpretive  (e.g., image‑quality improvement from 
under‑sampled magnetic resonance imaging or low‑dose 
computed tomography [CT]).[5]

Upper Limbs Fractures
The rate of missing a fracture between the upper and lower 
extremity is almost analogous. Upper limb fractures most 
likely to be missed are elbow (6%), hand (5.4%), wrist (4.2%), 
and shoulder  (1.9%).[8] Kim and MacKinnon trained a 
model using 1112 images of wrist radiographs, then they 
added additional 100 images for final testing and analysis 
(comprising 50 fractures and 50 normal). The area under the 
curve (AUC) was 0.954, with a diagnostic sensitivity of 90% 
and 88% specificity.[9] Lindsey et al. developed another CNN 
model for detecting wrist fractures using 135,409 radiographs 
and was able to improve the sensitivity of clinicians’ image 
reading from 88% unaided to 94% aided, and and by doing so, 
misinterpretation improved by 53%.[10] Olczak et al. designed 
an algorithm for distal radius fractures and tested it on hand and 
wrist radiographs. They compared the network performance 
with two experienced orthopedic surgeons and showed a high 

Figure  1: Shows the relationships of artificial intelligence, machine 
learning, deep learning, and convolutional neural network
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detection rate with a sensitivity of 90% and specificity of 
88%.[11] They did not specify the type of fractures or grade of 
difficulty of fracture detection.

Chung et  al. trained a CNN model to detect the fractures 
of proximal humerus and classify the type of fracture 
(four parts Neer’s classification) on a dataset of 1891 
anteroposterior shoulder radiographs. The model showed a high 
throughput precision of 96% and a mean AUC of 1.00 compared 
to specialists, with a sensitivity of 99% and a specificity of 
97%. However, the task of classifying the fracture was more 
challenging; the reported accuracy was ranging from 65% 
to 85%. The model showed superior performance accuracy 
compared to general physicians and orthopedic surgeons and 
almost similar performance to specialized shoulder surgeons.[12]

Rayan et al. developed a model with a multi‑view approach, 
which mimics the human radiologist when reviewing multiple 
images of acute pediatric elbow fractures. They used 21,456 
radiographic studies containing 58,817 elbow radiographs. 
The model accuracy was 88%, with a sensitivity of 91% and 
specificity of 84%.[13]

Lower Limbs Fractures
Hip fractures constitute 20% of patients admitted to orthopedic 
surgery, while the incidence of occult fractures on radiographs 
ranges from 4% to 9%.[14] Urakawa et al. developed CNN to 
study intertrochanteric hip fractures in a total of 3346 hip 
images (1773 fractured and 1573 nonfractured hip images). 
His model was compared to the performance of five 

Table 1: Classification of artificial intelligence application in view of body part fracture

Reference Anatomic area Module 
purpose

Modality Compared to human 
expert performance

Performance (metric)

Kim et al. 
2018

Wrist Diagnosis Radiographs No Provided proof of concept in fracture detection on 
plain radiographs 0.95 (AUC), 90% sensitivity and 
88% specificity

Olczak et al. 
2017

Hand/wrist/
ankle

Diagnosis Radiographs Yes Performance in detecting fractures from hand/wrist/
ankles radiograph sensitivity of 90% and specificity 
of 88%accuracy of 83% versus. radiologists, 82%

Lindsey et al. 
2018

Wrist Diagnosis Radiographs Yes Improved clinicians image reading sensitivity from 
88% unaided compared to 94% aided

Chung et al. 
2018

Proximal 
humerus

Diagnosis and 
classification 
(Neer)

Radiographs Yes Diagnosis accuracy of 96%, 99% sensitivity, 97% 
specificity
Classification accuracy range between 65% and 
86%, sensitivity 88% to 97%, specificity 83% to 
94% (dependent on the type)

Rayan et al. 
2019

Pediatrics elbow 
fractures

Diagnosis Radiographs No The model accuracy was 88% with sensitivity of 
91% and specificity of 84%

Urakawa 
et al. 2019

Intertrochanteric 
hip fractures

Diagnosis Radiographs Yes Convolutional neural network outperformed 
orthopedic surgeons at detecting, accuracies of 96% 
versus 92%, specificities of 97% versus 97%. 57 
and sensitivities of 94% versus 88%

Cheng et al. 
2019

Hip fracture Diagnosis Radiographs No Accuracy of 91%, a sensitivity of 98%, AUC of 
0.98

Adams et al. 
2019

Neck of femur Diagnosis Radiographs Yes Accuracy of 91%, AUC 0.98
Performing junior’s physician increased from 
87.6% to 90.5%

Balaji et al. 
2020

Femur 
diaphyseal

Diagnosis Radiographs No Accuracy of 90.69% with 86.66% sensitivity and 
92.33% specificity

Kitamura 
et al. 2019

Ankle Diagnosis Radiographs No Model with multiple views shown improved 
accuracy in fracture detection of 81% compared 
with single view of 76%

Pranata et al. 
2019

Calcaneus Classification 
(Sander)

CT No Sanders classification system model accuracy 98%

Rahmaniar 
et al. 2019

Calcaneus Classification 
(Sander)

CT Yes An accuracy of 86% with computational 
performance of 133 frame per second

Burns et al. 
2017

Spine Diagnosis CT No Model which detect, localize, classify the fractures 
and measure bone density vertebral bodies 
employing more lumbar and thoracic CT images. 
Attained sensitivity was 95.7%

Tomita et al. 
2018

Spine Diagnosis CT No Model which detect osteoporotic vertebral fractures 
achieved an accuracy of 89.2%

Muehlematter 
et al. 2019

Spine CT No Accuracy of classifying of unstable/stable vertebrae 
was low with AUC 0.53

AUC: Area under the curve, CT: Computed tomography
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orthopedic surgeons and showed accuracy of 96% versus 92%, 
specificities of 97% versus 57% and sensitivities of 94% versus 
88%.[15] Cheng et al. developed CNN algorithm, which was 
pretrained using 25,505 limb radiographs. Achieved algorithm 
accuracy for diagnosing hip fracture is 91%, sensitivity is 
98%. The performance achieved has a low false‑negative rate 
of 2%, which make it a good screening tool.[16] Adams et al. 
developed a model to detect the neck of femur fracture with 
an accuracy of 91% and AUC 0.98.[17] Balaji et al. developed 
CNN to diagnose femur diaphyseal fractures. The model 
was developed using 175 radiographs  (100 normal and 75 
fractured). Then trained to classify the type of diaphyseal 
femur fracture, namely transverse, spiral, and comminuted. 
The achieved highest accuracy of 90.7% with 86.6% sensitivity 
and 92.3% specificity.[18]

Missed ankle and foot fractures are common, especially in 
trauma patients. Some reports estimated missed diagnosis 
due to different reasons in the initial contact may reach up to 
44%, of which 66% were due to radiological misdiagnosis.[19] 
This is why researchers tried to train models for this purpose. 
Kitamura et al. developed CNN of a small number of ankle 
radiographs (298 normal and 298 fractured ankles). The model 
was trained to detect ankle fractures, where ankle fracture was 
defined as proximal forefoot, midfoot, hind foot, distal tibia, 
or distal fibula. The model with multiple views has shown 
improved accuracy in fracture detection from 76% to 81%.[20] 
Pranata et al. proposed two types of CNN algorithms for the 
classification of calcaneal fractures using CT images using 
the Sanders classification system. The proposed algorithm 
exhibited 98% accuracy, which makes it a viable tool for future 
use in computer‑assisted diagnosis.[21] Rahmaniar and Wang 
developed a computer‑aided method for calcaneal fracture 
detection in CT. Sanders system was also used for fracture 
classification, where calcaneus fragments were detected and 
marked by color segmentation. The achieved performance 
accuracy was high (86%), with a computational performance 
of 133 frames per second.[22]

Spine Fractures
The incidence of misdiagnosed spine fractures varies among 
studies and ranges from 19.5% to 45%.[23] Burns et al. was 
able to detect, localize, classify vertebral spine fractures as 
well as measure bone density of vertebral bodies using lumbar 
and thoracic CT images. Achieved sensitivity was 95.7% 
and a false‑positive rate of 0.29 per patient for compression 
fractures detection and localization.[24] Tomita et al. developed 
CNN to extract radiological features of osteoporotic vertebral 
fractures in CT scan. The model was trained using 1432 CT 
scans, comprised of 10,546 sagittal views, and achieved an 
accuracy of 89.2%. The product algorithm was then tested on 
128 spine CT scans and an accuracy of 90.8% was achieved.[25] 
Muehlematter et al. proposed algorithms to detect vertebrae 
at risk of fracture using 58 CT scans of patients with acquired 
fractures due to vertebral insufficiency. One hundred and 
twenty items (60 stable vertebrae and 60 unstable vertebrae) 

were included in the study. However, the grading accuracy of 
unstable/stable vertebrae was low with AUC of 0.5.[26]

Discussion
The efficacy of AI compared to human’s intelligence is 
emerging as an effective tool to address the current blemishes 
of human errors. The AI current status of the technology 
can be described by Gartner’s hype cycle [Figure 3], which 
defines how a technology, or an innovation progresses through 
its life cycle from concept to widespread adoption.[27] The 
cycle consists of five phases: The first phase is a “technology 
trigger” where only technology is envisioned, followed by a 
“peak of inflated expectations phase,” where the technology 
profile is raised with successful and unsuccessful trials. Then, 
it is followed by the “trough of disillusionment phase” at 
which defects in the technology cause disappointment in its 
effectiveness, followed by the “slope of enlightenment” as 
companies begin to test it in their own environments. The 
final phase is the “plateau of productivity,” where technology 
is available in the market.[25] AI in medical applications, and 
fracture detection specifically, is still in the early phases of 
this cycle and fall at the peak of the inflated expectation phase 
as more reports continue to demonstrate the efficiency of AI 
in detecting fractures.[7] Currently, the work published in the 
field of orthopedic traumatology to date is small collective 
initiatives, trying to get proof of concept rather than applying 
technology.

The objective of integrating AI into the clinical practice is 
to augment the workflow at clinical environment rather than 
replacing the workforce. Thus, with the evaluation of new 
computing platforms and the development of new algorithm 
models, the new generation of AI is anticipated to advance 
the quality of workflow in several ways namely improving 
the experience of care, the diagnoses, minimizing the errors, 
improving time management, and reducing costs.[5] One of the 
greatest challenges, which can be improved by AI is accurate 

Figure  3: Gartner’s hype cycle provides a graphic illustration of the 
maturity and deployment of technologies and applications
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radiological diagnosis, especially in an emergency setting by 
inexperienced or exhausted clinicians. Therefore, the aid of 
AI in the fracture detection is more important in augmenting 
workflow compared to segmentation or classification.[9] For 
example, assisting AI in diagnosing difficult fractures such 
as elbow fracture in children will have a greater impact on 
the treatment outcomes compared to classifying the type of 
fracture.

By integrating AI into the clinical setting, AI is expected 
to provide clinicians with better clinical insights needed to 
reduce the errors and improve the quality of task interpretation. 
Another important aspect where AI can play a major role is 
official reporting systems after office hours. AI should support 
a reporting system for an examination performed in hospitals 
where the radiologist is not attending in person.[7]

The expectation from the latest AI tools is to demonstrate 
the state‑of‑the‑art results. It should improve workload and 
increase daily productivity by replacing the manual retrieval 
of image data from a database to suggest a comparison with 
new images, or even for audits and clinical studies. Moreover, 
AI should drive efficient worklist prioritization in the work 
environment, communicating the important image analysis 
and ensure automatic assignment to the most appropriate 
available physician.[4]

Limitations and Challenges of 
Artificial Intelligence in the 
Clinical Setting
AI remains far from independently operating in a clinical 
setting. In the face of many successful implementations 
of AI models, application limitations must be recognized. 
Published works are of an experimental nature and are not 
incorporated into daily clinical practice, which may show 
the feasibility and efficacy of proposed diagnostic models. 
Added to that even, the published works are challenging to 
be reproduced, because most training data sets and codes 
are rarely published. Moreover, the proposed models need to 
be integrated within clinical information software as well as 
Picture Archiving and Communications Systems in order to be 
useful. However, until now, very limited data present this type 
of integration.[5] Moreover, the safety demonstration of these 
models to regulatory agencies is an important step for clinical 
translation and widespread uses. However, there is no denying 
that AI is making rapid progress and great improvements.[4,6]

In general, new generations of DL and in particular CNN have 
successfully demonstrated to be more accurate and rapidly 
developed with innovative results than earlier generations. 
These approaches are now diagnostically accurate and are 
predicted to outperform human experts in the future. It would 
also potentially give a more precise diagnosis to patients. In 
general, to be able to interpret and use artificial intelligence 
correctly, physicians must have a clear understanding of the 
tools used on AI. Taking in account the challenges standing 

in the way of clinical translation and widespread uses. These 
challenges range from proof of safety to clearance from 
regulatory agencies.

Conclusion
Several AI models demonstrated certain performance at the 
expert level. Although the comprehensive interpretation of the 
image has not been achieved yet, it is too early to consider AI 
operating independently in a clinical setting. However, with 
the current technology, AI has the potential to be considered 
to augment the efficiency of clinical workflow.
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