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Review Article

IntRoductIon
A large number of musculoskeletal abnormalities exist, 
which affect the morphology and growth of one or group of 
bones, muscles, and connective tissues in the skull, trunk, 
and limbs. These abnormalities ultimately affect the integrity 
of body position, weight‑bearing property, and locomotion. 
Musculoskeletal abnormalities and disorders of limbs form 
the largest group of congenital defects.[1] Congenital limb 
deformity is frequent with variable clinical presentation and 
can present as an isolated disorder (nonsyndromic) or a part 
of a syndrome (associated with other extra‑musculoskeletal 
conditions). Congenital vertical talus (CVT) is a rare 
congenital limb deformity that affects the positioning of the 
foot.[2] It is characterized by valgus and equinus deformity 
of the hindfoot, along with the dorsiflexion at the midfoot 
and abduction of the forefoot.[3] This abduction is caused 
by a fixed dorsal dislocation of the navicular bone on the 
head of the talus. Typical CVT is considered as a type I 
CVT. However, it is termed as CVT type II if the CVT 
type I includes deformity of the calcaneocuboid joint.[4,5] 

The incidence of a CVT is 1 in 10,000, and it affects both 
males and females in equal proportion.[2,5] CVT is bilateral 
in approximately 50% of cases.[2,6] CVT rarely occurs as 
a nonsyndromic condition and in most of the cases exists 
as a part of a syndrome.[7,8] Syndromic forms of CVT 
are mostly associated with defects of the central nervous 
system (arthrogryposis, myelomeningocele, sacral agenesis, 
and neurofibromatosis), muscle abnormalities (ischiocalcaneal 
band), acquired deformities (cerebral palsy and spinal muscular 
atrophy), and certain genetic conditions (Freeman–Sheldon 
syndrome, Smith–Lemli–Opitz syndrome, Marfan syndrome, 
Sheldon–Hall syndrome, nail–patella syndrome, Eagle‑Barrett 
syndrome, and split‑hand/split‑foot malformation).[5,9‑18]
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clInIcAl PResentAtIon of congenItAl 
VeRtIcAl tAlus
CVT is also frequently termed as “congenital convex pes valgus” 
or “rocker‑bottom foot” deformity.[19‑21] CVT is a dislocation of 
the talonavicular joint characterized by vertical positioning of 
the talus with a rigid dorsal dislocation of the navicular bone, 
equinus malformation of the calcaneum, abduction defect of 
the forefoot, and soft‑tissue contracture of the hindfoot and 
midfoot.[21] The Achilles tendon is contracted, and the calcaneum 
is in equinus.[22] Radiographic evaluation on the lateral view 
shows the long axis of the talus to be vertical and lying parallel 
with the longitudinal axis of the tibia.[22] Forced plantar flexion 
and forced dorsiflexion lateral radiographs are also required for 
the confirmation of the CVT diagnosis and to differentiate it from 
the oblique talus. The forced plantar flexion lateral view shows 
persistent malalignment of the long axis of the talus and the first 
metatarsal [Figure 1]. The forced dorsiflexion lateral radiograph 
exhibits a persistently decreased tibiocalcaneal angle showing 
fixed hindfoot equinus and shows the persistent malalignment 
of the long axis of the talus in relation to the navicular bone.[22] 
A postmortem examination on newborns, as well as findings 
during surgical corrections, has contributed to our understanding 
of the pathoanatomy of the CVT.[3,19,23,24] Dorsal and lateral 
displacements of the navicular bone with respect to the head 
and neck of the talus were observed. Moreover, the navicular 
bone becomes hypoplastic and wedge shape due to abnormal 
articulation with the talus. For a definite diagnosis of a case, it is 
essential to maintain the foot in extreme plantar flexion to show 
that the navicular bone is dislocated dorsally on the neck of the 
talus.[25] Contractures of foot muscles, including tibialis anterior, 
extensor hallucis brevis, peroneus tertius, peroneus longus, and 
peroneus brevis, were frequently observed.[22]

An underlying neuromuscular disease must be ruled out 
in isolated CVT.[7] In order to rule out isolated CVT, any 
evidence of flexion contractures or ulnar deviation of the 
fingers, as well as limitation of motion at other joints, must be 
excluded. Radiographic assessment is enough to establish the 
diagnosis. CVT has been associated with certain defects of the 
central nervous system, multiple malformation syndromes, in 
utero deformations, and some gross chromosomal defects.[4] 
However, the precise etiology of CVT is still unknown.

tReAtment of congenItAl VeRtIcAl 
tAlus
CVT is treated surgically as well as nonsurgically. The main 
aim of the treatment is to resume the normal function of the 
foot by correcting the anatomic relationship among talus, 
navicular bone, and calcaneum. Most commonly employed 
nonsurgical treatment methods involve conservative therapies, 
such as manipulation and serial casting.[26] This method is used 
to improve the deformity and thus decrease the complexity 
of the surgical procedure.[25] However, these methods are 
not always successful in this deformity.[6] The surgical 
procedure involves correction between the ages of 6 and 
12 months. Mostly, a single‑stage surgery is used to obtain 
the necessary correction.[25,27,28] The use of consecutive plaster 
cast treatment (serial cast correction) to slowly reduce the 
talonavicular joint, followed by minimal surgical interventions, 
has shown good early results in the treatment of CVT.[26,29]

tRAnsmIssIon of congenItAl VeRtIcAl 
tAlus
Isolated forms of CVT have been reported to transmit in families. 
In most of the familial cases of CVT, an autosomal dominant 
inheritance has largely been considered as a transmission 
pattern.[7,30‑33] Families with asymptomatic parents have also 
been reported.[32] However, in cases where both parents are 
asymptomatic, the inheritance pattern can also be considered 
as an autosomal recessive. Nevertheless, in such cases, carriers 
were presumed to be nonpenetrant. Definite inheritance pattern 
could not be determined in familial CVT due to small family 
size, the rarity of the problem, incomplete penetrance of the 
phenotype, and lack of thorough clinical evaluation of carriers.

genetIcs of congenItAl VeRtIcAl 
tAlus
The contribution of genetic factors in the etiology of CVT 
is evident from the fact that 50% of isolated CVT patients 
have affected first‑degree relatives.[30] Several families with 
more than one affected individual segregating CVT have 
been reported. Moreover, the association of CVT with 
well‑established genetic syndromes strengthens the hypothesis 
of genetic factors underlying CVT. The segregation of CVT 
in families suggests a major role of a single gene variant(s) 
in an individual family. In this context, defects in signaling 
pathways and the associated molecular components involved 
in the development of the skeleton might be the dominant 
players and an underlying cause of CVT.

genetIc models used to decIPheR 
the genetIcs of congenItAl VeRtIcAl 
tAlus
Genetic association, as well as candidate gene variant 
approaches, has been used to identify the genetic factors 

Figure 1: (a) Anteroposterior of 3‑year‑old girl feet. (b and c) Lateral 
view demonstrates the malalignment of the first ray with the talus bone. 
The long axis of the talus passes planter to the metatarsal axis
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underlying CVT. Moreover, a genome‑wide linkage analysis 
study design has also been used to decode the genetics of CVT.

cAndIdAte gene sequencIng
Cartilage‑derived morphogenetic protein‑1 (growth 
differentiation factor 5)
Cartilage‑derived morphogenetic protein‑1 (CDMP1) is also 
known as growth differentiation factor 5. CDMP1 encodes 
a ligand for the transforming growth factor‑beta (TGF‑β) 
superfamily of proteins. Binding of CDMP1 ligand with 
the TGF‑β receptors leads to the recruitment and activation 
of a group of transcription factors and thus controls gene 
expression in various cell types and subsequently plays 
a role in the development of cartilage, joints, and the 
growth of neuronal axons.[35‑38] Mutations in CDMP1 cause 
severe upper‑ and lower‑limb malformations, including 
Grebe‑type acromesomelic dysplasia, Hunter‑Thompson‑type 
chondrodysplasia, Du Pan syndrome, and brachydactyly 
type C.[35,39‑46] Some reports also showed that CVT is a part 
of a spectrum of skeletal malformations due to CDMP1 
heterozygous mutations.[35,42] Candidate gene sequencing 
approach was used in families with CVT, and a heterozygous 
mutation (c.1312C>T; p.R438C) in CDMP1 was identified in 
a North American family with isolated CVT.[47] The data have 
not been replicated, and this is the only report available. The 
authors of this review have performed in silico analysis of the 
variant (c.1312C>T) and found that the variant is in the active 
domain of the CDMP1 and is predicted to be likely disease 
causing. For instance, it is predicted to be deleterious by sorting 
intolerant from tolerant (SIFT) (score 0), probably damaging 
by PolyPhen‑2 (score 1), and damaging by MetaLR (score 
0.738) tools (unpublished data).

HOXD10
HOXD10 gene encodes a homeobox DNA‑binding domain 
containing protein. The HOXD10 protein is expressed in the 
limb buds during development and is known to play a role in 
differentiation and limb development functions by acting as 
a sequence‑specific transcription factor.[48,49] Mutations in the 
HOXD10 gene have been associated with Wilms’ tumor,[9] 
esophageal squamous cell carcinoma,[42] and CVT.[33,34,43,44] 
A missense mutation (c.956T >A; p.Met319Lys) in the 
homeodomain recognition helix of HOXD10 was detected in 
all affected individuals of an extended family with isolated 
CVT.[34] This mutation was previously reported in a family 
with bilateral CVT and Charcot–Marie–Tooth disease.[50,51] 
The authors of this review have performed in silico analysis 

of the variant (c.956T>A) and found that the variant is 
pathogenic (ClinVar) and clinically significant. It is expected 
to be deleterious by SIFT (score 0), possibly damaging by 
PolyPhen‑2 (score 1), and damaging by MetaLR (score 0.9496) 
tools (unpublished data). However, a significant number of 
families with isolated CVT are negative for mutations in 
the coding as well as 5’ and 3’ untranslated regions of the 
HOXD10 gene.[52] This shows that HOXD10 mutations are 
not a common cause of isolated CVT. Therefore, downstream 
spatiotemporal transcriptional targets of the HOXD10 gene 
must be characterized and screened in CVT families. HOXD10 
target genes expressing in the developing limb may be the 
excellent candidate genes for CVT.

coPy numbeR VARIAtIon And 
congenItAl VeRtIcAl tAlus
The deletion of the distal part of the long arm of chromosome 
18 (18q deletions) is known to cause the 18q‑deletion 
syndrome. The 18q‑deletion syndrome phenotype has been 
described well and varies greatly among individuals with 18q 
deletions.[53,54] Variations in clinical features in patients with 
distal 18q deletions are due to the difference in the size of the 
deletion. Various studies have used chromosomal microarray 
to identify the precise genotype–phenotype correlation in 
patients with 18q deletions.[53‑61] The region was narrowed to 
a 5.8 Mb segment (69.1–74.9 Mb) for lower‑limb deformities, 
including CVT.[60] It was further narrowed to 1.70 Mb (72.2–
73.9 Mb) containing just five genes (ZNF407, ZADH2, teashirt 
zinc finger homeobox 1 (TSHZ1), C18orf62, and ZNF516) 
in patients with bilateral CVT features only [Figure 2].[62] 
Further analysis of the deletions using patient data from 
the DECIPHER database (http://decipher.sanger.ac.uk/) and 
data published by Feenstra et al. (2007) refined the region to 
1.02 Mb (72.9–73.5). This region contains only TSHZ1 and 
C18orf62 genes [Figure 2].

Teashirt zinc finger homeobox 1 and C18orf62
TSHZ1 encodes a transcriptional factor containing atypical 
DNA‑binding domain.[63,64] It is predicted to be involved 
in the developmental processes through transcriptional 
regulation of target genes.[64] Based on the expression pattern 
of the TSHZ1 in human tissues and its role in murine skeletal 
growth and development, the gene TSHZ1 was considered 
as a likely candidate gene for the bilateral CVT phenotype 
in 18q‑deletion syndrome.[62] A recent study has identified 
a 2.5 Mb deletion (chr18: 72.8–75.4) in a patient with 
syndromic features, including bilateral CVT using array 

Figure 2: Schematic representation of the congenital vertical talus critical genomic region in 18q deletion
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comparative genomic hybridization.[65] The region overlaps 
with the previously identified region and has TSHZ1 as the 
only common gene [Figure 2]. Therefore, TSHZ1 is the 
most plausible candidate gene for CVT in the 18q‑deletion 
syndromes. The second gene in the 1.02 Mb (72.9–73.5) 
critical region on chromosome 18 is C18orf62 or small 
integral membrane protein 21 (SMIM21). SMIM21 is an 
uncharacterized protein‑coding gene. Expression data are 
lacking, and pathogenic variations in this gene have not been 
associated with any human disease. Moreover, this gene is not 
present in the smallest common deletions identified by Mark 
et al. and Tassano et al.[62,65] Therefore, up till now, the impact 
of the heterozygous deletion of SMIM21 on the clinical features 
of CVT is unclear.

skeletAl muscle contRActIle genes In 
congenItAl VeRtIcAl tAlus
Contractile genes encode a component of the contractile 
apparatus of skeletal myofibers. It is known that the muscle 
biopsy specimens from patients with CVT have abnormalities 
in skeletal muscles, including the small size of the muscle fiber 
and predominant abnormal fiber type.[66] Mutations in skeletal 
muscle contractile genes ( MYH3, MYH8, TPM2, TNNI2, and 
TNNT3) are responsible for distal arthrogryposis (DA).[66‑70] 
The DA syndrome is a group of abnormalities manifested as 
nonprogressive congenital contractures mainly involving the 
distal parts of the limbs.[71‑73] The foot phenotype described in 
individuals with DA is similar to the foot features in isolated 
CVT.[71] Therefore, it is proposed that the contractile genes 
responsible for DA might also be involved in more common 
distal limb defects, including CVT.[74] This assumption 
is supported by the fact that variations in skeletal muscle 
contractile genes influence the risk of clubfoot, another 
distal limb anomaly.[69] Therefore, skeletal muscle contractile 
genes must be considered in the etiology of CVT. However, 
the resequencing of coding exons of three contractile 
genes (MYH3, TNNT3, and TPM2) failed to identify any 
pathogenic variant in CVT patients.[74] Failure to identify the 
CVT‑causing variants in contractile genes has been attributed 
to the low number of samples tested.[74]

dIscussIon
CVT occurs both in isolated and syndromic forms. Therefore, 
it is important to rule out the CVT‑associated clinical features 
while assessing individuals with apparently isolated forms 
of CVT. Extra‑musculoskeletal features may also exist with 
CVT, including neurological malformations. Approximately 
half of the CVT cases are associated with abnormalities of 
various systems including muscles, skeleton, and nervous 
system.[2,9,11,13,14,31,75‑78]

The role of genetic variations in the etiology of CVT is 
evident from the fact that CVT has the tendency to aggregate 
and segregate in families. Moreover, the autosomal dominant 
inheritance model has been widely suggested emphasizing 

Mendelian segregation and monogenic factor within a family. 
Furthermore, isolated CVT patients with a first‑degree relative 
have been reported in 50% of the cases.[30] The genetic factors 
underlying CVT are not fully penetrant, and a variable 
expression has been observed in multiple families segregating 
CVT.[7,34] Although genetic variants are implicated in CVT, the 
effect of these variants in the pathogenesis of CVT is estimated 
to be small to moderate in size and may vary from population 
to population.

Variants in HOXD10 and CDMP1 have been associated with 
CVT. However, the replication studies are largely missing. The 
deletion of TSHZ1 gene has also been implicated in isolated 
CVT, though heterozygous knockout mice failed to recapitulate 
human phenotype.[64] Several studies failed to identify defects 
in genes associated with CVT. This emphasizes that CVT is a 
genetically heterogeneous phenotype, and large‑scale studies 
are required to decipher the gene network underlying CVT 
phenotype. We suggest whole‑exome sequencing in those 
families where at least 2 individuals with CVT are available. 
Once an underlying gene CVT is identified, the gene can be 
screened in isolated cases. Besides, in isolated cases, copy 
number variation detection using dense SNP array might lead 
to detect indels underlying CVT.
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