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Introduction
Developmental dysplasia of the hip (DDH: MIM 142700) is 
a congenital orthopedic malformation of the hip joint leading 
to a distorted femoral head socket. Globally, DDH exceeds 
all other congenital orthopedic disorders in terms of disease 
prevalence.[1‑3] Anatomically, DDH is hallmarked by aberrant 
acetabular and/or femoral growth, which is implicated in 
a typical dysplasia encompassing hip joint dislocation or 
subluxation leading to impaired joint functioning. The impaired 
articular surface apposition may lead to early arthritis.[4,5] 
Phenotypic spectrum of DDH manifests variability, which is 
linked to the degree of aberration found in the femoral head 
and acetabulum. DDH is a heterogeneous disorder where 
several environmental as well as genetic factors play their 
role in its pathogenesis.[1‑6] Among environmental factors, 
several pregnancy‑related physiological conditions such as 
lack of amniotic fluid (oligohydramnios), breech presentation 
whereby buttocks and/or feet of the newborn baby comes first 
during delivery, delivering for the first time (primiparity), and 

increased weight of the newly born baby have been associated 
with the DDH pathogenesis.[3,7‑10] The mere fact that more 
than one member of a single family are affected by DDH[11‑15] 
depicts a pivotal role of genetic factors underlying DDH 
pathogenesis.[16‑19] A substantial increase in disease risk of DDH 
has been reported in Asian siblings of affected families, with 
double impact in case of female siblings compared to male 
siblings.[20,21] DDH has been divided into DDH1 (MIM 142700) 
and DDH2 (MIM 615612) based on genetic heterogeneity. The 
inheritance pattern in DDH1 is multifactorial and the disease 
phenotype has been mapped on chromosome 13q22,[13] whereas 
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DDH2 shows autosomal dominant inheritance and has been 
mapped on chromosome 3p22.2.[4] Clinical heterogeneity of 
DDH can be seen in its syndromic forms, where it is shown 
up with other clinical disorders such as cardiac and renal 
malformations and club foot,[22] though mostly it is manifested 
as an isolated entity without any other additional disorders. 
This review focuses on the genetic aspects of isolated form of 
DDH. The disease incidence rate of DDH varies in different 
parts of the world, ranging normally 1.5–20  cases out of 
1000 live births,[23] with even higher rates of DDH incidence for 
certain Mediterranean countries along with Italy and Japan.[24,25] 
This variation in incidence is because of different practicing 
parameters such as the time at which the DDH is evaluated 
clinically and the use of different diagnostic methods.[23] 
An incidence rate of 3.17–3.50 for every 1000 live births 
has been documented for the Middle East, based on certain 
hospital‑based studies.[26‑28] This figure may rise considerably 
provided a detailed population‑based study at the national 
level is conducted in the Middle Eastern countries especially 
in the Kingdom of Saudi Arabia, where genetic disorders are 
relatively more prevalent due to a typical tribal culture and 
common consanguineous marriages.[29]

In this article, we have reviewed genetic studies on DDH 
that are available online in PubMed. Keywords including 
“developmental dysplasia of the hip” in combination with 
“genetics,” “gene,” “mutation,” “congenital,” and “inherited” 
were used to search for the relevant literature. We found that 
a variety of genetic approaches have been used to identify the 
genetic defects underlying DDH based on the type of samples 
available and the pattern of inheritance of the disease. We first 
discuss the approaches used to delineate the genetics of DDH, 
followed by brief details of the genetic variants reported in 
DDH cases and families.

A. Genetic Association Studies
Detection of association of genetic variants in a specific gene 
or genomic region with a given phenotype is usually carried 
out using the technique of genetic association. In this approach, 
genetic markers are genotyped in a group of DNA samples 
from patients  (cases) and normal individuals  (controls). 
Nowadays, single‑nucleotide polymorphism (SNP) markers 
are extensively used for genotyping. Screening of SNPs 
determines the association of a phenotype with a particular 
area of a chromosome. This association is helpful in exposing 
the underlying genes for a particular trait.[30] The International 
Human HapMap Project has generated human genome 
haplotypes, which are used in genotyping SNPs throughout the 
genome. This approach is termed as genome‑wide association 
studies (GWASs).

In GWAS, the whole genome is screened using SNPs; 
therefore, a good number of patients as well as control 
samples from the same population are required.[31,32] In the 
context of DDH, recruiting enough patients for GWAS always 
remains a challenge. This led to comparatively less efficiency 

of GWAS in detecting DDH‑specific susceptibility genetic 
variants. However, few case–control studies have led to the 
identification of genetic variants underlying DDH phenotype 
in several populations. Susceptible variants in genes involved 
in joint development and chondrogenesis have been associated 
with DDH. These include variants in HOXD9, ASPN, HOXB9, 
TGF‑Beta 1, PAPPA2, DKK1, and GDF5 genes.[10,33‑39]

B. Genetic Linkage Studies
Studying the inheritance pattern of a phenotype in a family 
and detection of genetic markers closely segregating with the 
disease phenotype has been used extensively to identify the 
underlying genetic variants in several diseases. This approach 
has identified mutations in several genes as a causative factor 
of the genetic diseases. Earlier, identification of chromosomal 
parts segregating with a disease phenotype within a family was 
accomplished using microsatellite markers. Nowadays, SNP 
markers are genotyped throughout the genome to detect linkage. 
This approach is termed as genome‑wide linkage analysis 
(GWLA). GWLA approach is not very effective in complex 
genetic disorders as compared to single‑gene disorders.[40,41] In 
DDH, owing to complex inheritance fashion and incomplete 
penetrance of the potentially pathogenic variants, GWLA has 
not successfully mapped chromosomal regions except in few 
studies.[3,4,15] Moreover, a variable spectrum of DDH phenotype 
is also observed in different members of a single family 
manifesting its phenotypic heterogeneity.[42] The chromosomal 
regions identified in linkage to DDH using GWLA approach 
include regions on chromosome 3p22.2‑p22.1, 4q35, 13q22, 
16p, and 17q21.32.[4,13,15,43]

C. Structural Genomic Variations
Structural genomic aberrations, which lead to a change in 
the diploid pattern of the genome, in the form of deletions 
or duplications, are known as copy number variants (CNVs). 
Moreover, chromosomal rearrangements typically larger 
than 1 kb are also classified as structural genomic variations. 
Different genome analytic approaches such as whole‑genome 
SNP genotyping, array comparative genomic hybridization, 
and high‑throughput DNA sequencing are generally used to 
detect CNVs. Currently, high-resolution microarrays having 
probes for both the SNPs and CNVs are used as a gold 
standard to identify the CNVs.[44] Disease‑causing CNVs 
manifest disease phenotypes by either distorting the coding 
region of the gene or increasing the number of the already 
existing gene or by giving rise to a new gene from the fusion 
of two genes. At present, above 6,359,956 CNVs are enlisted 
in the database of genomic variants (2016). Likewise, 22,358 
disease‑causing CNVs  (gross insertions and deletions) are 
documented in the Human Gene Mutation Database (2019). 
These CNVs have been implicated in several genetic disorders 
such as schizophrenia, bipolar disorders, and autism.[45‑48] As 
far as DDH is concerned, both sporadic and familial, no study 
has been conducted to identify CNVs in DDH. Any such study 
may come up with novel results.
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D. DNA Sequencing
Sequencing coding part of the human genome or even the 
complete human genome can be used to detect mutations 
underlying DDH. Sequencing of complete protein‑coding 
regions  (exons) of the genome is termed as whole‑exome 
sequencing (WES). WES covers almost 3% of the human genome. 
Another DNA sequencing approach, called whole‑genome 
sequencing (WGS), determines the order of all the nucleotides 
in an individual’s DNA and can determine variations in any 
part of the genome. With the advent of high‑throughput 
next‑generation sequencing technique, the dream of sequencing 
the entire coding regions of the genome (WES) and WGS in a 
matter of days with accuracy and reliability has changed into 
reality. The very first implication of WES in the identification 
of mutations underlying a genetic disorder was first reported 
in 2009.[49] There onward, this powerful technique has 
successfully been implicated in finding the underlying genetic 
variants in a variety of genetic disorders ranging from skeletal 
abnormalities, neurological malformations, skin disorders, 
and retinal dystrophies.[50‑53] Feldman et al. in 2013[4] recruited 
a large family with multiple individuals affected with DDH. 
WES of the family led to the identification of a genetic variant 
in a chemokine receptor gene  (CX3CR1). Previously, this 
nonsynonymous variant (rs3732378) was thought to be an SNP. 
The authors have shown that this variant is indeed a pathogenic 
variant using different pathogenicity prediction software such 
as PolyPhen‑2 and SIFT. Based on the presence of phenotypic 
variability among the affected members of a DDH family, 
the authors have also suggested the role of a modifier variant 
that might have been involved in disease heterogeneity. This 
indicates the need for further investigations and validations of 
the variant (rs3732378) in CX3CR1 gene. Recently, the same 
group has reported a mutation in teneurin 3 (TENM3) in a large 
family with multiple DDH‑affected individuals.[54]

Single and Small Genomic Variations 
in Developmental Dysplasia of the 
Hip
Using the above‑mentioned approaches, many genetic variants 
were found affiliated with DDH or as an underlying genetic 
defect in DDH. Variants in genes such as CX3CR1, TENM3, 
PAPPA2, COL2A1, HOXD9, GDF‑5, and TGFB1 have been 
identified as increasing the susceptibility of having DDH.[55]

Chemokine‑CX3C motif‑receptor 1
Chemokine‑CX3C motif‑receptor 1 (CX3CR1) is a member 
of a group of about 45 proteins of human chemokine family 
that play a significant role in human health and diseases 
development. Chemokines are small protein molecules that 
express in response to injury or infection and bind to and 
subsequently activate chemokine receptors. This led to the 
leukocyte adhesion to the vessel wall, leukocyte trafficking, 
changes in the morphology, and chemotaxis to the site of injury 
or infection.[56] Moreover, activation of chemokine receptor 
via chemokine binding also plays a role in different biological 

processes such as extracellular matrix remodeling and 
tumor metastasis besides differentiation and activation.[57‑60] 
Furthermore, HIV and malarial parasite use chemokine 
receptors to invade the host cells.[61,62]

Using an approach of linkage analysis and WES, Feldman 
et  al.[25] identified a variant in CX3CR1 as an underlying 
genetic defect in a large family from Utah. DNA samples 
from 71 members of a family were collected, and DNA from 
four severely affected members was exome sequenced. A 
previously reported population polymorphism  (rs3732378) 
in CX3CR1 was identified as a pathogenic variant. Moreover, 
few sporadic DDH cases were screened, and the same variant 
was detected.[21,25] In continuation of their previous work, 
Feldman et al. generated a CK3CR1 knocked down mice and 
compared the resultant phenotype with the wild‑type mice. 
Computerized tomography (CT) was used to evaluate the hips 
of both the knocked down and wild‑type mice at the age of 5 
and 8 weeks, respectively. An inclined treadmill was used to 
evaluate the gait of 8‑week‑old mice. The authors showed that 
CX3CR1 ablation affects acetabular morphology and gait.[63]

In a case–control study, Li et al. found that variants in CX3CR1 
increase the susceptibility to DDH. The assumption is based on 
genotyping data from 689 DDH patients, in which two CX3CR1 
variants (rs3732378 and rs3732379) were genotyped.[21]

Teneurin transmembrane protein 3
TENM3 encodes a transmembrane protein, which belongs 
to the tenascin superfamily. Members of this family play a 
variety of functions. TENM3 predominantly functions in the 
development of the visual system.[64,65] TENM3 mutations have 
been reported to cause different disease conditions including 
motor developmental delay, ocular coloboma, microphthalmia, 
and intellectual disability.[66‑78] Although developing nervous 
system harbors high levels of TENM3, TENM3 mRNA can also 
be found in prechondrogenic mesenchymal cells. Therefore, 
it could be involved in the initial phase of differentiation of 
chondrogenic cells.[69] Recently, the mutation in TENM3 has 
been found in a family segregating DDH.[54] A mouse model 
was generated for TENM3 mutation depicting late left glenoid 
fossa and acetabular development. Moreover, it was found that 
the bone marrow cells from TENM3 mutant mouse overexpress 
MMP13 with or without BMP2 stimulation. It is known that 
higher levels of MMP13 lead to cartilage degeneration.[70] 
Based on the above observations, the authors hypothesized 
that mutated TENM3 may slow chondrogenesis.[54]

WNT1‑inducible signaling pathway protein 3
WNT1‑inducible signaling pathway (WISP) protein subfamily 
comes under the umbrella of connective tissue growth factor 
family. WISP3 encodes a member of WISP family. Genes that 
belong to this family are involved in regulating cell growth and 
differentiation.[71,72] Mutations in the WISP3 gene have been 
known to cause an autosomal recessive form of progressive 
pseudorheumatoid dysplasia (PDD). PDD is a skeletal disorder 
characterized by damaged hip joint as a result of continuous 
degeneration and loss of articular cartilage.[71,73]
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Recently, a case–control study, including 386 DDH patients 
and 558 healthy individuals, identified an SNP (rs69306665) 
upstream of WISP3 gene in association with DDH.[1]

Ubiquinol‑cytochrome c reductase complex assembly 
factor 1
Ubiquinol‑cytochrome c reductase complex assembly 
factor 1 (UQCC1) is reported to be expressed in developing 
cartilaginous cells called chondrocytes, which are responsible 
for the secretion of the matrix by the cartilage.[74] This gene has 
previously been reported as a candidate gene for phenotypes 
such as height, testicular germ cell tumor, and spine bone 
size.[75‑77] Keeping in view the importance of UQCC in the 
chondrification process, an associated role of UQCC with 
DDH had been suggested. The results of GWASs revealed 12 
variants in UQCC1 gene linked with DDH. Following GWAS, 
a case–control study was conducted to evaluate the association 
of UQCC gene in DDH manifestation. The results confirmed 
the association of UQCC1 variant  (rs6060373) with DDH 
phenotype in the Han Chinese population.[30]

Asporin
A cartilaginous protein called Asporin  (ASPN) is encoded 
by the gene ASPN. ASPN is involved in the regulation 
of cartilage development process, chondrogenesis.[78‑80] 
ASPN is reported to bind with bone morphogenetic protein 
2  (BMP2) and subsequently block the downstream BMP/
Smad signaling pathway.[81,82] BMP2 is an important growth 
factor of transforming growth factor β1 (TGF‑β1) family and 
plays a significant role in the proliferation and differentiation 
of osteoblast and perichondrial cells.[83,84] The gene comprises 
a repeat region of aspartic acid, which is linked with skeletal 
anomalies, owing to its polymorphism.[79]

Skeletal abnormalities such as lumbar disc malformation, 
rheumatoid arthritis, and osteoarthritis of the hip region are 
affiliated with allelic polymorphism of the ASPN gene.[85‑87] 
A recent study identified loss of copy number variations in 
ASPN gene on chromosome 9 at 9q22.31 and found that the 
CNVs in the region are associated with severe acetabular 
dysplasia.[87] Moreover, a case–control study established the 
association of ASPN polymorphism and DDH.[34] The authors 
showed that polymorphism in ASPN actually affects TGF‑β1 
to cause DDH.

Transforming growth factor‑beta 1
TGF‑β1‑encoded protein was found to be involved in different 
developmental processes such as growth and proliferation 
of cells followed by their differentiation. The protein is 
also considered to play a regulatory role for certain other 
growth factors.[88‑91] To evaluate the role of TGF‑β1 in DDH, 
a carefully designed case–control study was conducted. The 
cases included were osteoarthritis patients secondary to 
DDH and the controls were osteoarthritis patients without 
any DDH manifestation. This investigation identified a 
potential interaction between TGF‑β1 and interleukin 6 (IL6). 
Moreover, this study found an association of variants in both 
TGF‑β1 and IL6 with DDH.[6]

Growth differentiation factor 5
Proteins involved in the formation of bone skeleton are coded 
by GDF5 and lie under the umbrella of a superfamily of 
proteins known as TGF‑β. Binding different receptors in signal 
transduction pathways, these proteins regulate expression 
of the genes.[92] GDF5 is involved in the morphogenesis of 
different cell types including neural and bone formation‑related 
cell types beside teeth and fat cell types.[93] Any change 
in the sequence of this gene will lead to skeletal‑related 
anomalies.[94‑106]

As far as the hip is concerned, GDF5 has been implicated in the 
development of an embryonic limb/skeletal system, in particular 
development of articular cavities and cartilage.[93,106‑109] GDF5 
is an important player involved in hip development and joint 
formation.[108] Several GWAS established the link between 
common SNPs spanning a 130 kb interval containing GDF5 
and osteoarthritis.[110‑112] Moreover, various reproducible 
studies showed a strong association of GDF5 with DDH and 
hip dislocation.[33,113‑115]

Pregnancy‑associated plasma protein‑A2
Protein generated by PAPPA2 interacts with binding protein 5 
of insulin‑like growth factor (IGF) and is considered to regulate 
the IGF.[116,117] Pregnancy‑associated plasma protein‑A2 
(PAPPA2) is identified to have a major regulatory role in the 
growth process, so the effect of PAPPA2 on bone shape and 
size has been suggested.[118] Deletion of PAPPA2 in mice leads 
to shorter femur length.[119] In humans, an association between 
DDH and a PAPPA2 SNP has been reported.[36] Others have 
replicated the results of previous studies.[120]

Homeobox genes
Homeobox (HOX) gene‑encoded transcription factors occupy 
a key position in the development of the vertebrate skeleton. 
This group contains 39 genes and are mapped to four gene loci 
HOXA‑D.[121] HOX genes regulate target genes by binding the 
targeted DNA region using its homeodomain.[122] For instance, 
anomalies related to lower limbs are related to 5’ truncation of 
HOXC genes.[123] In the following part, we discuss only those 
genes having known association with DDH.

HOXD genes encompass nine genes, namely HOXD1, 3, 4, 8, 
9, 10, 11, 12, and 13, which are closely located at chromosome 
2q24.1‑q33.1. These genes have their role known in skeletal 
system development, particularly in the development of a 
limb.[124] By creating different knockdown mutant models for 
HOXD genes in mice and chicken led to the finding that any 
perturbance in the expression pattern of HOXD genes will lead 
to change in shape and size of the targeted skeletal part.[125,126] 
The positioning of the hip joint in proximal limb part suggest a 
coincidence between hip area and area of expression of 9th pairs 
of HOX gene. Keeping in view these facts, a hypothesis 
was made regarding a possible role of HOXD in DDH 
manifestation. To verify this hypothesis, a genetic association 
study was designed to assess the association between SNPs of 
HOXD9 gene and female Han Chinese population with DDH 
symptoms. The findings of the study revealed the connection 
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between HOXD9 SNPs  (rs711819) and Han Chinese 
population with DDH. The studies also reported HOXD9 as 
a novel disease candidate gene for DDH.[37] Follow‑up and 
functional studies are required to clearly elucidate the exact 
molecular mechanism through which this part of the genome 
is associated pathogenically with DDH.

HOXB9 is a member of the Abd‑B HOX family and has 
implications in cellular developmental processes such as 
proliferation and subsequent differentiation. As far as DDH 
pathogenicity is concerned, HOXB9 gene appears with 
contradictory results. In one of the studies where genetic 
linkage analysis was done for a Chinese DDH family, DDH was 
shown to be linked to chromosome 17 at position 17q21 where 
HOXB9 gene is located.[127] However, these findings were 
contradicted in a case–control study in a European population 
where no association was developed between SNPs of HOXB9 
and DDH.[128]  Another study where whole‑genome screening 
established linkage to a specific location on chromosome 17 
where HOXB9 gene is also present.[15] Looking up at these 
contradictory reports, a case–control study on the Han Chinese 
population was conducted to evaluate the association between 
HOXB9 and DDH manifestation. Two tag SNPs (rs8844 and 
rs2303486) were used in the study. This study established an 
association of HOXB9 SNP (rs2303486) and DDH.[38]

T-box 4
Transcription factors that regulate different developmental 
mechanisms are encoded by T-box 4 (TBX4), one of the T‑box 
genes.[129] Expression of Tbx4 in growing hindlimb in chicken 
and mouse models indicates a connection between this gene 
and regulation and specification of limb development.[130,131] 
Microduplications involving TBX4 are associated with 
clubfoot in humans.[132] Moreover, mutations in TBX4 cause a 
small patella syndrome, a skeletal dysplasia, in which cartilage 
and bone growth processes are affected. As a result, individuals 
with small patella syndrome have malformations of the pelvis 
and feet.[133] Likewise, limb tissue‑specific Tbx4 mutant mice 
showed skeletal abnormalities such as hypoplastic pelvis, 
femurs, and fibula.[134] Keeping in mind the significant role 
played by Tbx4 in skeletal development, especially hindlimb 
development, it has been assumed that Tbx4 SNPs might cause 
susceptibility to DDH phenotype. To evaluate this assumption, 
all SNPs of Tbx4 were evaluated and two SNPs (rs3744438 
and rs3744448) were found to be associated with DDH.[135]

Developmental dysplasia of the hip‑associated genes
Some DDH‑associated genes such as ASPN, GDF5, TGFB1, 
and HOX are interrelated functionally. However, genes 
such as TENM3, CX3CR1, and PAPPA2 are not related to 
each other and with other DDH genes. Similarly, HSPG2 
and ATP2B4 gene mutations are known in familial DDH; 
however, they are not functionally interacting with other 
DDH known genes.[2] Interaction analysis using gene and 
protein data using molecular interaction search tools such as 
MIST[136] and GeneMANIA[137,138] was carried out to identify 
functional interaction between DDH‑associated genes and 
to detect new candidate gene. For instance, using molecular 

interactome analysis, we identified several members of 
keratin‑associated  (KRTAP) genes that directly interact 
with DDH‑associated gene. KRTAP members identified in 
this analysis include KRTAP1‑1, KRTAP1‑5, KRTAP2‑3, 
KRTAP3‑1, KRTAP3‑2, KRTAP4‑2, KRTAP4‑11, KRTAP4‑12, 
KRTAP5‑7, KRTAP5‑9, KRTAP6‑2, KRTAP10‑8, KRTAP10‑11, 
KRTAP12‑2, KRTAP17‑1, and KRTAP19‑5. The KRTAP 
proteins form a matrix of keratin intermediate filaments 
which contribute to the structure of hair fibers. KRTAP family 
members appear to have unique, family‑specific amino‑ and 
carboxyl‑terminal regions. Their association with disease 
conditions has not been described yet. Mutations in these 
genes might contribute to the development of DDH. We found 
that most of the DDH genes interact with each other either 
directly through protein–protein interaction or indirectly 
through transcription factors. Interactome analysis using 
gene and protein data identified several important genes as 
well [Figure 1].

Conclusion
Development dysplasia of the hip is clinically and genetically 
a heterogeneous disorder. It encompasses a broad range 
of disorders including minor acetabular dysplasia to 
irreducible hip dislocation. The pathophysiology of the 
DDH is incompletely understood. Mild hip subluxations and 
dislocation escape the early diagnosis due to lack of optimal 
timing for clinical examination, imaging, and appropriate use 
of imaging.

Genetic studies have helped in identifying the molecular 
markers for DDH. Association studies and linkage analysis 
succeeded in identifying several candidate genes, such as 
PAPPA2, COL2A1, HOXD9, GDF‑5, TGFB1, CX3CR1, and 
TENM3 as DDH‑associated genes. It is believed that these 
genes play a significant role in the pathogenesis of DDH. 
A  genetic screening program can be established for the 
screening for mild forms of DDH. Genetic screening program 
also has the potential to detect the DDH earlier in life.

Some of the DDH genes discussed in this review are part of 
the same signaling pathways, or they interact with each other 
through protein–protein interaction. For instance, ASPN, 
GDF5, TGFB1, and HOX genes are interrelated functionally. 
However, some genes such as TENM3, CX3CR1, and PAPPA2 
are not related to each other and with other DDH genes. 
Similarly, HSPG2 and ATP2B4 gene mutations are known in 
familial DDH; however, they are not functionally interacting 
with other DDH known genes. Using DDH known genes, 
molecular interaction search tools have been used to identify 
other interacting genes in DDH‑related signaling pathways. 
Interactome analysis has the potential to identify new potential 
candidate genes for studies aiming at identifying genetic 
variants underlying DDH.

Identification of candidate genes would pave the way for early 
detection of DDH. Timely detection helps in preventing further 
disability including osteoarthritis and movement impairment 
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and improves the psychological health and quality of life in 
affected children.
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