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Introduction
Cubital tunnel syndrome is the most prevalent neuropathy of 
the ulnar nerve. One in 78 people are affected by this syndrome, 
which can have a significant impact on the quality of life.[1,2] 
It is postulated that its anatomical position (posterior to the 
medial epicondyle and the axis of elbow flexion) puts the nerve 
at risk of exposure to abnormal forces. These forces result in an 
increased propensity for nerve injury.[3] The aetiology of cubital 
tunnel syndrome is controversial. Originally, it was thought 
to be due to a compressive or entrapment neuropathy.[4‑6] 
However, more recently, it has been thought to be due to nerve 
strain.[3,7‑9] At certain levels of strain, nerve perfusion and 
conduction have been found to be reduced or arrested.[10‑13] It 
has previously been shown that, during the normal movement 
range, the ulnar nerve reaches these levels of strain.[9,14] As 
ulnar nerve strain values have been proven to be so variable, 
there is a need for more research into this area.[15] While the 
effect of elbow flexion on strain is understood, research on the 

effect of shoulder abduction[15] and medial epicondylectomy 
is lacking and has not been studied sufficiently.

The three current surgical management strategies in common 
use are in  situ decompression, anterior transpositions and 
medial epicondylectomy. In contrast to in situ decompression, 
medial epicondylectomy and anterior transposition have 
a theoretical advantage of addressing abnormal strain 
as well as compression of the nerve. However, there 
is a paucity of literature on whether this is the case for 
medial epicondylectomy. To date, the effect of medial 
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epicondylectomy on ulnar nerve strain has only been studied 
using strain gauges.[16‑18] Unlike the suture marker method, 
these cannot be used intraoperatively as their implantation 
damages the nerve and therefore, an intraoperative assessment 
of strain reduction cannot be performed. Clearly, the potential 
to translate a strain measurement technique into clinical 
practice may directly improve patient outcomes.

The biomechanics of the ulnar nerve in elbow flexion with 
concomitant shoulder abduction has not been previously 
studied. This study aims to fill this gap in the current 
knowledge. To date, only strain gauges have been used to take 
dynamic measurements.[8,9,14,19,20] However, this study aims to 
take dynamic measurements by videoing the suture marker 
method, instead of static measurements from photographs. 
This will provide results that are more applicable to a real‑life 
situation, which eliminate the effect of stress relaxation. 
Therefore, the first aim of this study is to assess whether a 
dynamic manner of measuring strain from the suture marker 
method yields comparable results to those from a strain 
gauge as available in literature. The second aim is to assess 
the effect of elbow flexion, shoulder abduction and medial 
epicondylectomy on ulnar nerve strain.

Materials and Methods
Baseline characteristics
This study was performed on four embalmed upper limbs, from 
three cadavers aged 75–90 years with a mean age of 85 years. 
There were no known histories of cubital tunnel syndrome or 
handedness, cubitus varus or previous trauma to the nerve, 
elbow, shoulder or neck.

Dissection procedure
All nerves were exposed in a standard fashion.[18,21‑24] The 
olecranon, medial epicondyle and ulnar nerve were palpated 
and marked. A 15‑cm skin incision was then made, centred 
on the cubital tunnel. Subcutaneous tissue was dissected until 
fascia superficial to the ulnar nerve was visible. The deep fascia 
was divided along the course of the nerve. Superficial and deep 
fasciae of flexor carpi ulnaris were divided,[7,23] followed by 
separation of its two heads along the normal cleavage planes. 
To mimic an in vivo environment, no blood vessels overlying 
the nerve were removed, nerve branches were left intact and 
neurolysis was not conducted.[9]

In situ decompression was performed from the medial 
intermuscular septum to the first motor branch to flexor 
carpi ulnaris after releasing Struthers’ ligament, the medial 
intermuscular septum, the cubital tunnel retinaculum and 
Osborne’s ligament. The paraneurium was not disturbed, and the 
nerve was neither moved nor disconnected from its original bed.

Evidence of anconeus epitrochlearis was found in one arm; this 
was divided to avoid any confounding effect of additional nerve 
compression or entrapment. No nerves subluxed or dislocated 
out of the retrocondylar groove during passive motion of the 
elbow and shoulder.

Strain measurement
A pilot study was initially conducted on two porcine forelimbs 
to confirm the suitability of this method. These were supplied 
by Dissect (Birmingham, UK). Similar to other studies,[7,15,22‑24] 
two 4‑0 proline sutures were placed proximal to the cubital 
tunnel into the epineurium to avoid injuring the nerve or 
leaving it susceptible to tearing. Epineurial elongation was 
used as a measure of intraneural elongation of the ulnar 
nerve.[7,15,22,25] Sutures were placed approximately 2 cm apart, 
with the arm placed in the neutral position (shoulder abduction 
90° and elbow at maximum extension). Surgical reference 
rulers were pinned onto the surrounding tissue to allow 
subsequent calibration.

All cadavers were supine with the head, neck, wrist and 
fingers in neutral positions and the forearm supinated. Each 
limb was then ranged through 0°–120° elbow flexion at 
90°, 110° and 120° shoulder abduction in order to portray 
the whole range of elbow movement and to investigate 
the angles of shoulder abduction previously unstudied 
[Table 1]. Shoulder abduction angles were selected based 
on pilot data and the mobility of the cadavers. A goniometer 
was used to position the shoulder and elbow angles. For 
repeatability, lines of 90°, 110° and 120° shoulder abduction 
were drawn on the arms and aligned with a mounted laser 
to ensure that the correct angles were maintained during 
elbow flexion.

Videos were taken of the nerve of the full range of 
elbow movement at all shoulder positions with a Sony 
HDR‑PJ780VE camera (Sony Corporation, Tokyo, Japan). 
To avoid parallax errors, images were taken with the camera 
perpendicular to the plane of the medial surface of the nerve. 
It has been shown that tensile stress reduces over time 
due to stress relaxation properties of viscoelastic human 
nerves;[26] therefore, no repeats were performed to avoid this 
confounding effect.

Medial epicondylectomy
The anterior face of the medial epicondyle was exposed. 
Attention was given to preserving the periosteal layer, 
which acted as an interface with the nerve epineurium; 
thus, no additional dissection of the ulnar nerve was 
required. The medial epicondyle was then removed using 
a CleanCut™ CNS3 oscillating saw  (De Soutter Medical 
Limited, Buckinghamshire, United Kingdom) at 14,000 rpm. 

Table 1: Ulnar nerve strain at different angles of shoulder 
abduction  (90°, 110° and 120°) before and after medial 
epicondylectomy

Shoulder 
abduction (°)

Strain (%)

Before ME After ME
90 14 8
110 6 3
120 7 7
ME: Medial epicondylectomy
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A  composite sagittal and coronal plane cut was used to 
enable the nerve to glide anteriorly without impingement. 
The standard partial medial epicondylectomy technique as 
described in previous studies[18,27] was followed. This adapted 
technique avoids removal of the medial collateral ligament 
and common flexor origin and therefore, is less invasive and 
does not risk elbow instability or cubital valgus unlike other 
techniques such as the distal medial epicondylectomy.[18]

Following medial epicondylectomy, each limb was again 
ranged through the different configurations of shoulder 
abduction and elbow flexion angles (see strain measurement 
section, above). As performed when intact, video recordings 
were taken of each ulnar nerve during shoulder abduction 
and elbow flexion so as to measure nerve strain following 
the procedure.

Video analysis
Videos were analysed using ImageJ and Fiji software (National 
Institutes of Health, Bethesda, MD, USA)[28,29] with the 
MTrackJ plugin.[30] Rulers attached to arm musculature were 
used to calibrate the scale. The positions of the sutures proximal 
to the tunnel were then tracked at ten frame intervals. Strain 
was then calculated (Equation 1).

ε =
−L l
l

o

o

Where ε is strain, lo is the original length (mm) and L is the 
final length (mm).

Statistical analysis
Linear regression was performed to analyse the relationship 
between elbow flexion angle and ulnar nerve strain. 
A Wilcoxon signed‑rank test was used to assess whether 
there was a significant difference (P < 0.05) in ulnar nerve 
strain between different angles of shoulder abduction 
and between before and after medial epicondylectomy 
at full elbow flexion  (120°). The pairs of data analysed 
were before and after medial epicondylectomy. The 
elbow flexion was standardised at 120°, so the effect of 
shoulder abduction and medial epicondylectomy could 
be investigated.

Results
With one exception, due to missing data, ulnar nerve 
strain proximal to the cubital tunnel increased in direct 
proportion to the elbow flexion angle before and after medial 
epicondylectomy [Figures  1‑3]. At 100% elbow flexion, 
strain was greatest at 90° shoulder abduction and least at 110° 
shoulder abduction before and after medial epicondylectomy. 
However, these strains were not statistically significantly 
different [P > 0.05; Table 1].

The effect of medial epicondylectomy varied among 
and between individual limbs. Medial epicondylectomy 
reduced ulnar nerve strain at 90° shoulder abduction in 
three specimens; at 110° in one specimen and at 120° in one 
specimen [Figures 1a‑c, 2b and 3a].

dc
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Figure 1: Elbow flexion (%) versus proximal ulnar nerve strain at 90° shoulder abduction from dynamic data before and after medial epicondylectomy.  
a) Cadaver 1: BM 171-14 left elbow; b) Cadaver 1: BM 171-14 right elbow; c) Cadaver 2: BM 172-14; and d) Cadaver 3 BM 176-14
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Figure 2: Elbow flexion (%) versus proximal ulnar nerve strain at 110° shoulder abduction from dynamic data before and after medial epicondylectomy. 
a) Cadaver 1: BM 171-14 left elbow; b) Cadaver 1: BM 171-14 right elbow; c) Cadaver 2: BM 172-14; and d) Cadaver 3 BM 176-14
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Figure 3: Elbow flexion (%) versus proximal ulnar nerve strain at 120° shoulder abduction from dynamic data before and after medial epicondylectomy. 
a) Cadaver 1: BM 171-14 left elbow; b) Cadaver 1: BM 171-14 right elbow; c) Cadaver 2: BM 172-14; and d) Cadaver 3 BM 176-14
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Similarly, medial epicondylectomy reduced ulnar nerve strain 
at greater percentages of elbow flexion in one specimen at 
90° shoulder abduction and one specimen at 120° shoulder 
abduction [Figures 1d and 3b].

For one specimen at 120° after medial epicondylectomy, data 
could not be obtained as sutures 1 and 2 were not captured in 
the video [Figure 3d].

However, in two other specimens after medial epicondylectomy, 
there was increased strain [Figures 2d and 3c] or approximately 
the same strain in the final two specimens [Figures 2a and c].

Mean maximum strain at 90° before medial epicondylectomy 
was 14% and after medial epicondylectomy was 9%, with a 
range from 0% to 17% before and 0% to 15% after medial 
epicondylectomy. At 110°, mean maximum strain was 9% 
before and after medial epicondylectomy. At 120°, mean 
maximum strain was 9% before medial epicondylectomy 
compared to 8% after medial epicondylectomy. Hence, 
reduction of 5%, 0% and 1% was observed at 90°, 110° and 
120°, respectively. Figure 1 clearly shows that proximal ulnar 
nerve strain decreased for all four arms at 90°.

No significant difference was observed between before and 
after medial epicondylectomy at all shoulder abduction angles 
at 100% elbow flexion [P > 0.05; Figure 4].

Discussion
Cubital tunnel syndrome is the most prevalent neuropathy 
of the ulnar nerve.[3] Historically, it was thought that 
cubital tunnel syndrome was due to nerve compression 
and entrapment.[4] More recently, it is accepted that its 
pathophysiology is multifactorial, with compression, 
entrapment, excursion and strain hypothesised to contribute 
in pathologic synergy.

Medial epicondylectomy is used to treat cubital tunnel 
syndrome, but evidence on whether it alleviates symptoms 

by reducing nerve strain is lacking and has previously 
only be measured by strain gauges, which cannot be used 
clinically.[16‑18,25,27,31]

In addition to the effect of elbow flexion and medial 
epicondylectomy on strain, this study has tested the effect of 
shoulder abduction, which has not been previously investigated. 
A novel method of measuring nerve strain was also used. To the 
authors’ knowledge, the use of a videoed suture method has not 
been previously described. The rationale for using video was to 
try to eliminate the effects of stress relaxation. The degree of 
stress relaxation is determined by the time over which the stress 
is induced. With photography, time elapses between setting 
the limb to the correct position and capturing the photograph 
from which the strain is measured. This is a possible source 
of error, with natural variation between each photograph. 
However, with videoing, the strain is measured at the exact 
time that the limb was positioned. We hoped that a single 
controlled cycle of dynamic assessment would reduce the error 
from stress relaxation. A dynamic representation also more 
accurately reflects the in vivo situation. This study compared 
ulnar nerve strain proximal to the cubital tunnel at different 
degrees of shoulder abduction and elbow flexion before and 
after medial epicondylectomy to investigate whether medial 
epicondylectomy relieves symptoms by relieving nerve strain.

Schuind et al.[7] and Toby and Hanesworth[8] also measured 
cadaveric nerve strain at 90° shoulder abduction and found 
similar values of 18% and 0%–14%, respectively, which again 
is comparable to the range  (0%–17%) found in the current 
study. One study measured strain at 100° shoulder abduction[20] 
and found 3% strain. Another study measured strain at 110° 
shoulder abduction and found 6% strain;[9] this is comparable 
to the present study (6% strain at 110° shoulder abduction).

At 100% elbow flexion, medial epicondylectomy was 
found to reduce proximal ulnar nerve strain at 90° shoulder 
abduction by 5%, at 110° shoulder abduction by 2.5% and at 
120° shoulder abduction by 0.5%. However, none of these 
differences were significant. This reflects what is observed 
clinically as medial epicondylectomy works better for some 
patients than for others. Two other studies found similar 
strain reductions of 4.8% in embalmed arms[16] and 2.5% 
in fresh arms following medial epicondylectomy.[18] These 
results were both significant. Mitchell et  al.[17] measured a 
reduction of 5.1% in fresh arms, which like the present study, 
was not statistically significant. These studies measured 
strain with strain gauges, which involve damaging the nerve 
and altering the biomechanics. The dynamic suture marker 
method does not damage the nerve. Therefore, the authors 
were encouraged by the fact that this study, using a dynamic 
and less invasive method of measuring strain, yielded similar 
results to those from strain gauges. The method described 
in the present study could be used in vivo. Therefore, it has 
the potential for use intraoperatively to immediately assess 
operation outcomes. If it is agreed that strain contributes 
to cubital tunnel syndrome, it could perhaps be useful to 

Figure  4: Strain of the ulnar nerve proximal to the cubital tunnel, at 
120° (100%) elbow flexion, for the different shoulder abduction angles 
between before (BME) and after (AME) medial epicondylectomy
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measure whether an operation (e.g., in situ decompression) 
has reduced nerve strain intraoperatively to see if further 
intervention (e.g., transposition/epicondylectomy) is required 
while the patient is still on the operating table. Measuring 
strain intraoperatively could therefore save the time, money 
and resources required to bring patients back to theatre if the 
original operation did not reduce the nerve strain.

Obtaining similar results, despite differences in specimen 
types and methodology, is promising for the validity of the 
current study. However, this study is not without limitations. 
First, biomechanical properties of cadaveric nerves may 
contrast to those of live nerves.[9,26] Despite this, measuring 
ulnar nerve strain in cadaveric arms is a well‑established 
protocol.[6‑9,14,16‑18,23] Although absolute tensile forces may be 
higher in embalmed cadaveric nerves, a positive correlation 
has been proven between unembalmed and embalmed 
specimens.[32] Second, only four arms were available at the time 
of testing, which is a suboptimal sample size that could explain 
the lack of statistical significance. However, as extremely 
similar results have been observed in other studies, there is 
no reason to believe that the current study’s results are not 
representative.

An alternate explanation for the lack of a statistically significant 
strain reduction could be that medial epicondylectomy works 
better for some patients than for others due to variable nerve 
strains. However, it may only take a small variation in strain 
to produce symptoms in certain patients. Other patients may 
be more resistant to developing a problem from small strain 
changes. As this was a cadaveric study, it does not correlate 
with any symptoms of clinical outcomes. It would be useful 
to have clinical data to complement this research as well 
as physiological parameters such as nerve oxygenation and 
perfusion; these could be prime areas for future research. It 
would also be interesting to investigate the effects of other 
joint positions on ulnar nerve strain.

A study investigating patient outcomes after medial 
epicondylectomy found that fair and poor improvement was 
observed in 4 of the 25 patients (16%) studied;[31] this could 
be due to the variable reductions in strain seen with medial 
epicondylectomy. A high variation between nerves has been 
observed in many studies other than the current one, but the 
explanation for this is unknown.[7,8,33] This extensive range of 
strains might be the cause of the variation of outcomes in the 
clinical environment.[8] Young’s modulus was not investigated 
in this study as it does not give a full understanding of the 
behaviour of viscoelastic tissues such as the ulnar nerve.[34]

Mostly, medial epicondylectomy results in symptomatic 
relief for patients.[27,31,35‑40] Hence, it is likely that multiple 
factors contribute to cubital tunnel syndrome. These factors 
do include strain, but also compression, entrapment, excursion 
and other as yet undefined influences which work together in 
pathologic synergy. The authors acknowledge that there are 
clear limitations of this study. In spite of the small sample 
size, missing data and use of embalmed cadaveric nerves, this 

study provokes some interesting questions, which need to be 
addressed with future larger cadaveric and clinical studies to 
further understand the behaviour of the ulnar nerve.

Conclusions
The suture marker method yielded comparable results to strain 
gauges. Both shoulder abduction and medial epicondylectomy 
did not have statistically significant effects on ulnar nerve 
strain. However, only four embalmed elbows were studied in 
this preliminary study, so a large difference would be needed 
to produce a significant change. The finding that medial 
epicondylectomy fails to reduce strain raises questions about 
its role in treating cubital tunnel syndrome and highlights the 
need for further research.

Recommendation
While this study has highlighted the need for further research 
into a multitude of areas, the authors believe that the technique 
described for dynamic strain assessment is applicable to an 
in vivo setting and therefore, should be used to compare strain 
properties of cadaveric and in vivo nerves.

Ethical consideration and statement of the Declaration 
of Helsinki
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according to the Human Tissue Act,[41] and informed consent 
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to death as part of the donor registration programme at the 
University of Birmingham (license number 12236). Therefore, 
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1964 Declaration of Helsinki and all subsequent revisions.
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