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INTRODUCTION

Fractures caused by various factors, such as falls, accidents, and sports injuries, have profound 
implications for individuals’ health and quality of life. To prevent further complications and 
disabilities, timely diagnosis and treatment are crucial. In addition, the rising global population 
challenges ensuring universal access to essential medical services. Fractures are expected to 
surge with aging populations disproportionately impacting low- and middle-income countries.[1]

Conventionally, fractures are diagnosed through radiological imaging techniques such as 
radiographs, magnetic resonance imaging (MRI), and computed tomography (CT) scans. 
While radiographs are cost-effective and widely used, CT and MRI scans provide more detailed 
fracture visualization. However, the availability of experienced radiologists varies across health-
care facilities leading to disparities in accurate diagnosis.[2] This inconsistency in expertise could 
potentially jeopardize timely and effective patient care.

ABSTRACT
Objectives: This study aimed to assist radiologists in faster and more accurate diagnosis by automating bone 
fracture detection in pediatric trauma wrist radiographic images using self-supervised learning. This addresses 
data labeling challenges associated with traditional deep learning models in medical imaging.

Methods: In this study, we trained the model backbone for feature extraction. Then, we used this backbone to 
train a complete classification model for classifying images as fracture or non-fracture on the publically available 
Kaggle and GRAZPERDWRI-DX dataset using ResNet-18 in pediatric wrist radiographs.

Results: The resulting output revealed that the model was able to detect fracture and non-fracture images with 
94.10% accuracy, 93.21% specificity, and an area under the receiver operating characteristics of 94.12%.

Conclusion: This self-supervised model showed a promising approach and paved the way for efficient and 
accurate fracture detection, ultimately enhancing radiological diagnosis without relying on extensive labeled data.

Keywords: Bone fracture, Diagnostic accuracy, Medical imaging, Radiography images, Self-supervised machine 
learning

How to cite this article: Thorat SR, Jha DG, Sharma AK, Katkar DV. Wrist fracture detection using self-supervised learning methodology. J Musculoskelet 
Surg Res. 2024;8:133-41. doi: 10.25259/JMSR_260_2023

is is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share 
Alike 4.0 License, which allows others to remix, transform, and build upon the work non-commercially, as long as the 
author is credited and the new creations are licensed under the identical terms. ©2024 Published by Scientific Scholar on 
behalf of Journal of Musculoskeletal Surgery and Research

www.journalmsr.com

Journal of Musculoskeletal Surgery 
and Research

 *Corresponding author: 
Sachin Ramdas Thorat, 
Research Scholar,  
Department of Data Science 
and Technology, K.J. Somaiya 
Institute of Management, 
Somaiya Vidhyavihar 
University, Mumbai, 
Maharashtra, India.

Sachin.thorat@Somaiya.edu

Received: 19 December 2023 
Accepted: 12 February 2024 
Epub Ahead of Print: 26 March 2024 
Published: 30 April 2024

DOI 
10.25259/JMSR_260_2023

Quick Response Code:

https://orcid.org/0009-0003-8262-0659
https://orcid.org/0009-0005-0286-5539
https://dx.doi.org/10.25259/JMSR_260_2023
https://dx.doi.org/10.25259/JMSR_260_2023


Thorat, et al.: Bone fracture detection using AI

Journal of Musculoskeletal Surgery and Research • Volume 8 • Issue 2 • April-June 2024  |  134 

Moreover, the medical imaging landscape is evolving 
rapidly, marked by a projected 30% increase in medical 
imaging studies by 2025. Consequently, radiologists face 
mounting pressures, as evidenced by the need for an average 
radiologist to interpret an image every 3–4 s to manage 
clinical demands.[3] This increased workload contributes to 
diagnostic delays and errors.[4] This urgency for accurate and 
efficient diagnosis drives the need for artificial intelligence 
(AI) integration in medical imaging workflows.[5]

Integrating AI holds great promise in addressing these 
challenges. The AI can augment radiologists’ diagnostic 
capabilities by identifying anomalies and generating 
reports allowing radiologists to focus on intricate cases and 
improving overall diagnosis speed and accuracy.[6]

However, developing AI models for medical imaging is 
constrained by the need for high-quality labeled data due 
to the labor-intensive nature of the annotation.[7] Curating 
labeled datasets for every medical imaging task becomes 
impractical within the realm of healthcare automation 
possibilities.[8] This predicament underscores the necessity of 
innovative strategies that leverage unlabeled data for training.

Self-supervised learning emerges as a promising paradigm 
to address this data scarcity issue. By enabling models to 
learn representations from unlabeled data, self-supervised 
learning sidesteps the need for extensive labeled datasets. 
This approach is particularly appealing for tasks such 
as fracture detection where labeled data is limited. The 
research presented in this paper explores the application of 
self-supervised learning techniques to fracture detection 
within the medical domain. The objective is to develop 
an automated system capable of aiding radiologists in 
accurately classifying wrist radiographic images as fracture 
or non-fracture employing a self-supervised learning model 
ensemble. Through this study, we aimed to contribute to 
the advancement of fracture detection by harnessing the 
potential of self-supervised learning ultimately enhancing 
the efficiency and accuracy of radiological diagnosis without 
being contingent on abundant labeled data.

The subsequent sections of the paper detail the methodology, 
experimental results, discussion, and conclusion elaborating 
on the proposed approach and its implications for medical 
imaging.

The results of this research contribute to advancing fracture 
detection methodologies offering potential applications in 
clinical practice and patient care.

Fracture detection approaches

Deep learning has gained significant attention in medical 
imaging due to its ability to extract complex image features 
automatically. Deep learning algorithms, particularly 
convolutional neural networks (CNNs), have revolutionized 

medical image analysis. These algorithms can automatically 
extract complex features from medical images making them 
suitable for fracture detection tasks.[9]

Several approaches have been proposed for fracture detection 
using conventional methods. A  computer-aided diagnosis 
system for detecting wrist fractures from radiographic 
images was developed achieving an accuracy of 86.4% using 
traditional machine learning techniques including support 
vector machines (SVMs) and decision trees.[10]

A fractal-based method for rib fracture detection in CT 
scans was introduced by Yao et al. with the calculation of 
the fractal dimension of the fractured ribs resulting in a 
sensitivity of 93%.[11] In 2016, a method based on a CNN for 
detecting fractures in wrist radiographs was proposed in a 
study achieving an accuracy of 92.5%.[12] In 2020, a CNN was 
utilized for identifying hip fractures in radiographic images 
leading to an accuracy of 94.2% and a precision of 96.3%.[13]

These approaches demonstrate the potential of supervised 
learning in fracture detection but highlight the reliance on 
labeled data, which may limit scalability and generalization. 
Furthermore, while effective, these methods often require 
handcrafted features and extensive manual labeling making 
them less scalable and potentially less accurate in complex cases.

These deep-learning approaches typically require large 
amounts of labeled data for training, which can be a limiting 
factor in the medical domain due to the need for expert 
annotations. Training supervised learning models requires 
expensive data labeling, and even then, they can struggle with 
challenges such as poor generalization, false relationships, 
and vulnerabilities to manipulation.[14]

Self-supervised learning

Self-supervised learning has gained traction as an alternative 
approach to leverage the abundance of unlabeled data for 
training deep models. Self-supervised learning offers a 
solution to the labeled data scarcity problem. By leveraging 
the inherent structure or information within the unlabeled 
data, self-supervised learning algorithms can train deep 
learning models in a semi-supervised or unsupervised 
manner.[15]

One popular self-supervised learning technique is 
contrastive learning, which learns representations by 
maximizing agreement between augmented views of the 
same image and minimizing agreement between views from 
different images.[15] It aims to embed augmented versions 
of the same sample close to each other while pushing away 
embeddings from different samples. By formulating pretext 
tasks that generate supervisory signals from the data 
itself, self-supervised learning enables the models to learn 
meaningful representations without manual annotations.[14] 
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This approach could address the scarcity and cost of labeled 
fracture datasets.

Furthermore, integrating self-supervised learning with 
transfer learning techniques has demonstrated even more 
significant performance gains. Leveraging pre-trained 
models on large-scale datasets, the learned representations 
can transfer the learned representations to the fracture 
detection task with limited labeled data.[16] This transfer-
learning approach has shown improved fracture detection 
accuracy and efficiency, particularly in scenarios with limited 
annotated fracture images.

Recent studies have explored applying self-supervised 
learning techniques for fracture detection in medical 
imaging. Cho et al. proposed a self-supervised framework 
based on contrastive learning to detect fractures in 
radiographic images.[17] Their results demonstrated improved 
fracture detection performance compared to traditional 
methods. Similarly, another study utilized a self-supervised 
approach based on rotation prediction to detect fractures 
in CT scans achieving competitive results.[18] Doersch et al. 
introduced the concept of pretext tasks, such as predicting 
image rotations, to learn representations from natural 
images.[19] Inspired by this, recent studies have applied self-
supervised learning to medical images for various tasks.

A self-supervised approach for skin lesion classification using 
dermoscopic images was introduced achieving competitive 
results compared to supervised methods.[20] Furthermore, 
self-supervised learning study for lung nodule detection in 
CT scans leads to improved performance over traditional 
supervised models.[21] These studies highlight the potential of 
self-supervised learning to capture clinically relevant features 
without extensive manual annotation.

MATERIALS AND METHODS

Dataset

In this study, we used the pediatric trauma wrist radiograph 
dataset from Kaggle and GRAZPERDWRI-DX dataset to 

train a machine-learning model to detect wrist fractures. The 
Kaggle dataset contains 20,327 annotated images, which were 
divided into a training set of 16,327 images and a testing set 
of 4000 images.

The GRAZPEDWRI-DX dataset is a large and diverse collection 
of pediatric wrist radiographic images that are publicly available 
for free download. The dataset consists of 20,327 images from 
6091  patients who were treated at the University Hospital 
Graz between 2008 and 2018. The images were annotated by 
pediatric radiologists, and the dataset is licensed under the 
Creative Commons Attribution 4.0 International (CC BY 4.0) 
license. GRAZPEDWRI-DX is used for backbone training, and 
the Kaggle dataset is used for model training.

Our method harnesses the power of self-supervised learning 
algorithms, precisely the contrastive learning approach. 
Simplified contrastive learning (SimCLR) is a way to teach 
a computer to understand images without showing it any 
labeled examples. It does this by training the computer 
to find image similarities and differences. The learned 
representations can then be used for other tasks, such as 
image classification, without having to train the computer 
from scratch.

SimCLR consists of two main components:
1.	 Base encoder network: This network extracts features 

from the input images.
2.	 Contrastive loss function: This function trains the model 

by maximizing the similarity between the features of 
augmented versions of the same image and minimizing 
the similarity between the features of different images.

Base encoder networks such as ResNet-18 are typically pre-
trained CNNs [Figures 1 and 2]. 

Data pre-processing

As a part of the pre-processing phase, uniformity is 
ensured by resizing all images to dimensions of 512 × 512. 
Normalization is employed to standardize pixel values across 
the dataset, which aids in enhancing model performance 
during training and evaluation.

Figure 1: Self-supervised methodology – The unlabeled images are trained using ResNet-18 using a 
projection head to develop a 128d feature vector.
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Figure  2: Supervised fine tuning – The labeled images use the learned representations to detect 
fracture and non-fracture images.

Data augmentation and pair generation

To enrich the diversity of our dataset, we employ data 
augmentation techniques, which encompass a range of 
random transformations such as rotations, translations, flips, 
and brightness adjustments. These augmented versions of 
the images serve as inputs to the subsequent stages of our 
approach.

For training, we generate positive and negative image pairs. 
Creating this paired dataset constitutes a pivotal step in our 
self-supervised learning framework. Positive pairs consist 
of augmented images originating from the same underlying 
image, capturing its inherent features under diverse 
transformations. Negative pairs are formed by combining 
augmented images from different original images. This 
dataset of image pairs is subsequently utilized to train our 
fracture detection model.

Architecture

We employ a ResNet-18 deep CNN as the backbone for 
feature extraction [Figure 3]. The SimCLR model consists 
of a ResNet-18 feature backbone (with the classification head 
removed) and a linear projection head. After training the 
contrastive model, we would discard the projection head and 
add an appropriate classification head for the downstream task. 
The training procedure relies heavily on producing augmented 

pairs for each input data point. Those pairs, called positive 
samples, are the basis for the contrastive learning objective, 
where we optimize our model to produce representations that 
achieve high similarity between the positive pairs and low 
similarity with all the other augmented data points (negatives).

SimCLR projection head

We incorporate the SimCLR algorithm’s projection head 
mechanism to enhance feature extraction [Figure 4]. The 
projection head is integrated into the backbone neural 
network, ResNet-18 architecture. This augmented backbone 
learns to extract pertinent features from radiographic images, 
effectively representing both fractured and non-fractured 
images. The Cosine similarity function is calculated as
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sim: Cosine similarity, u and v: Vectors whose similarity to 
be found, U and V: Matrices that hold the vectors u and v as 
rows, T: Transpose operation.

The application of SimCLR involves augmenting the dataset 
of fractured reports with specific transformations. Pairs of 
augmented data points are then created, and the SimCLR 

Figure 3: Architecture of self-supervised learning – Data collection, data augmentation, and pair generation followed by contrastive learning 
for feature extraction to classify fracture and not-fracture images.
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Figure 4: Simplified contrastive learning – Project head is used to augment images. The transformed images using base encoder ResNet-18 to 
develop 128d feature vectors.

algorithm is employed to learn and maximize the similarity 
of pairs from the same class while minimizing the similarity 
of pairs from different classes. This learning process ensures 
that representations are robust and discriminative, aligning 
well with fracture detection requirements.

The learned representations from the SimCLR algorithm 
serve as the basis for training a fracture detection classifier. 
The classifier’s training is executed on a separate held-out test 
set containing fractured images.

Loss function

SimCLR uses a contrastive loss function to measure the 
similarity between two views of an image. The goal is to 
maximize the similarity between positive pairs (two views of 
the same image) and minimize the similarity between negative 
pairs (two views of different images). The model’s objective is 
achieved through a contrastive loss function – NT-Xent Loss, 
which penalizes errors in predicting similarities. The NT-Xent 
loss function for a positive pair is calculated as

( )
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l: Loss value, i and j: Indexes referring to a specific positive 
pair of examples within a batch, sim: Cosine similarity 
function, exp: Exponential function, z: Vectors produced 
by the neural network for each image in the batch, N: Total 
number of images in a batch, T: Temperature hyperparameter, 
k: Index that iterates over all the examples in a batch (of size 
2N) excluding the current positive example.

Model training

The model is trained using a stochastic gradient descent 
(SGD) optimizer, which is an iterative algorithm that updates 
the model parameters by moving in the direction of the 
negative gradient of the loss function. During training, the 
weights of the network are adjusted based on the contrastive 
loss. This loss function measures both the similarity between 
positive pairs (representing related data points) and the 
dissimilarity between negative pairs (representing unrelated 
data points). By minimizing the contrastive loss, the network 
learns to encode similar data points close together in the 
feature space, while pushing dissimilar data points apart. 
This process ultimately helps the network learn meaningful 
representations of the data.

Accuracy charts

Accuracy charts are used to visualize the performance of 
a model on a given task. The charts are explained below 
[Figures 5 and 6].

Area under the receiver operating characteristics 
(AUROC)

The classification head was trained for 40 epochs. The entire 
model was then trained from epoch 40 to 50 results.

Fine tuning

After training a neural network on a supervised task, the 
base network and projection head is fine-tuned using labeled 
data for a specific task. This helps to adapt the learned 
representations to the new task. The network is fine-tuned on 
labeled data to learn the specific features of fractures that are 
important for detection.
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Evaluation metrics

The evaluation measures of the models are calculated using 
accuracy, precision, recall, F1-score, AUC, and ROC [Figure 7]. 
These metrics are evaluated based on the confusion matrix of 
each model.

These metrics comprehensively assess the model’s 
performance across key fracture detection accuracy and 
robustness aspects. The confusion matrix is a tool that 
provides a detailed overview of the performance of a 
classifier model. Accuracy can be misleading, especially for 
imbalanced datasets. The figure illustrates the different types 
of predictions (true positive, true negative, false positive, and 
false negative) in the context of bone fracture detection.

Accuracy is the percentage of correct predictions made 
by a model, calculated by dividing the number of correct 
predictions by the total number of predictions.
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Figure 5: Plots of accuracy versus the number of epochs obtained while training a linear classifier on 
labeled training data.
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Figure 6: Plots of area under the receiver operating characteristics (AUROC) versus the number of 
epochs obtained while training a linear classifier on labeled training data.

Figure 7: Confusion matrix for bone fracture detection.
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( )
( )

TP +TN
Accuracy =

TP +TN + FP + FN

TP: True positive, TN: True negative, FP: False positive, FN: 
False negative.

Recall, also known as sensitivity, is the percentage of positive 
cases correctly identified by a model, calculated by dividing the 
number of true positives by the total number of positive cases.

( )
TPRecall =

TP + FN

The F1 score is a metric that combines precision and recall 
into a single measure of model performance. It is calculated 
by taking the harmonic mean of precision and recall, which 
gives equal weight to both metrics.

( )( )
( )
×2  

1
Precision × Recall

F - Score =
Precision + Recall

F1 - Score: Metric used to evaluate performance of a model.

Hyper parameters

•	 Learning rate: 0.001–0.01
•	 Optimizer: Stochastic gradient descent
•	 Loss function: NT-Xent loss
•	 Similarity: Cosine similarity function
•	 Number of epochs: 50
•	 Batch size: 32
•	 Model architecture: ResNet-18

In our experiments, the proposed algorithm consistently achieves 
noteworthy results: an accuracy of 94.10%, a specificity of 
93.21%, and a recall of 95.03%. This surpasses the performance 
benchmarks of conventional fracture detection methods.

RESULTS

The model was able to detect fracture and non-fracture 
images with 94.10% accuracy, 93.21% specificity, and an 
AUROC of 94.12%.

DISCUSSION

The model achieved promising results, demonstrating 
its potential as a decision support tool for radiologists in 
detecting wrist fractures.

The self-supervised approach offers a valuable alternative to 
traditional supervised learning, especially when labeled data 
is limited.

Observations

•	 Self-supervised learning is a promising approach for 
fracture detection. Self-supervised learning methods 
have shown promise in detecting fractures in various 
medical images, including radiographs.

•	 Self-supervised learning methods are more scalable and 
cost-effective than traditional methods. Self-supervised 
learning methods do not require labeled data, which can 
be expensive and time-consuming to collect.

•	 Self-supervised learning methods can be used to 
automate fracture detection. This could free up 
radiologists to focus on more complex cases and help to 
reduce the time it takes to diagnose fractures.

•	 Self-supervised learning methods can be used to 
improve the accuracy of fracture detection.

•	 Self-supervised learning methods can learn 
representations of medical images that are more robust 
to variations in pose and contrast than traditional 
methods, leading to earlier diagnosis and treatment of 
fractures and improving patient outcomes.

However, challenges such as dataset variability, 
generalizability to different imaging modalities, and 
interpretability of learned features still need to be addressed. 
These studies suggest that self-supervised learning is a 
promising approach for fracture detection. However, more 
research is needed to improve the accuracy and robustness 
of self-supervised learning methods for fracture detection.

Limitations

•	 Limited data understanding: Self-supervised models 
learn from unlabeled data, which may lack the specific 
context or medical expertise needed to identify 
and classify fractures accurately. This can lead to 
misinterpretations and missed diagnoses.

•	 False positive/negative rates: Without the guidance of 
labeled data, self-supervised models can struggle to 
differentiate between fractures, leading to both false 
positives (misdiagnosing fractures) and false negatives 
(missing actual fractures).

•	 Generalization issues: Models trained on unlabeled data 
may not generalize well to unseen scenarios or variations 
in fracture presentation.

The research provides recommendations for future 
improvements and potential research directions.

CONCLUSION

Applying self-supervised learning techniques in fracture 
detection within the medical domain has emerged as a 
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promising approach. The utilization of contrastive learning, 
predictive coding, and transfer learning strategies has shown 
significant improvements in accuracy, reducing the reliance 
on large labeled datasets. By leveraging unlabeled data, self-
supervised approaches have the potential to overcome the 
limitations of traditional supervised methods, especially in 
cases where labeled data is scarce or expensive to obtain.

The findings of this research pave the way for the broader 
adoption of self-supervised learning in the field of fracture 
detection, enhancing accuracy with minimal reliance on 
labeled data.

Future direction

Further research and exploration of self-supervised learning 
methods hold great potential for advancing fracture 
detection systems, enhancing diagnostic accuracy, and 
improving patient outcomes. Future research should focus on 
investigating different pretext tasks and architectural designs 
that best suit the task of fracture detection. In addition, transfer 
learning techniques that leverage self-supervised features 
for downstream tasks could further enhance the clinical 
applicability of self-supervised learning in fracture detection.
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