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Introduction
The mild and severe forms of dystrophin‑associated muscular 
dystrophies include Becker muscular dystrophy  (BMD), 
dilated cardiomyopathy  (DCM), and Duchenne muscular 
dystrophy (DMD). The phenotype can be as mild as muscle 
cramps accompanied with creatine phosphokinase elevation 
and myoglobinuria in asymptomatic carrier to progressive 
skeletal and heart muscle dystrophies in those affected with 
DMD and BMD.[1] Although this is an X‑linked recessive group 
of disorders where males are predominantly and can be severely 
affected, carrier females who are usually asymptomatic can be 
as severely affected as males. This might be partly explained 
by the skewed chromosome X‑inactivation.[2,3]

DMD is the severe, lethal, and early‑onset dystrophinopathy. 
It manifests with delay in motor development and progressive 
proximal muscle weakness, rendering those affected 
wheelchair‑bound by age 12. Mild‑to‑severe mental retardation 
has been reported in  ~20% of the patients.[4] Few survive 
DMD with the respiratory and DCM‑related complications 
being the most common causes of death in those patients. On 
the milder side, BMD manifests with a later onset of muscle 
weakness with DCM‑related heart failure being the most 

common cause of death in those patients. Some male patients 
with mutations in the DMD gene present with isolated DCM 
leading to congestive heart failure with carrier females being 
at risk of developing DCM, making molecular testing and the 
following clinical surveillance very useful.[5]

Molecular Mechanism and Testing 
of Dystrophinopathies
Dystrophin‑associated muscular dystrophies are caused by 
mutations in the X‑linked DMD gene (Gene MIM number: 
300, 377) leading to absent or dysfunctional dystrophin. 
Dystrophin is mainly expressed in skeletal, cardiac muscles, 
and; to lesser extent, some brain cells. In muscle cells, 
the dystrophin‑protein complex anchors and connects the 
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cytoskeleton with the extracellular matrix to provide strength 
to muscle fibers and protection against damage induced during 
the contraction‑relaxation of muscles.[6] In addition, dystrophin 
plays an important role in the proper structure and function 
of synapses and acts as scaffolding for signaling molecules 
required for neurotransmitters release.[7]

Molecular diagnosis of dystrophinopathies can be confirmed 
by detecting hemizygous or heterozygous pathogenic or 
likely pathogenic variants in the DMD gene in males and 
females, respectively. The most common type of variants is 
large deletions and duplications, accounting for 60% of the 
cases, whereas the rest of the cases are accounted for by small 
frameshift and missense variants.[8] It is noteworthy that the 
DMD gene is the largest human gene of about 2.2‑ml base pairs 
in size, making the mutation spectrum wide and hard to test 
using one single diagnostic assay.[9] Therefore, the diagnostic 
molecular assay to be used varies based on the type of mutation 
to be detected. The sensitive quantitative assays, quantitative 
polymerase chain reaction, multiplex ligation‑dependent probe 
amplification, and gene‑targeted microarray are widely used 
and recommended to detect large‑ and exon‑level deletions 
and duplications. The gene‑targeted deletion/duplication 
assays can detect the causal variants in  ~65%–80% of 
dystrophinopathies.[5] If negative, gene sequencing or 
multigene panel assays using next‑generation sequencing, for 
example, are to be considered for detecting small frameshift 
and point variants, whereas assays such as Sanger sequencing 
can be utilized to detect known familial variants  (targeted 
testing).[5,10] Gene sequencing assays can detect the causal 
variants in ~20%–35% of dystrophinopathies.[5]

According to the guidelines of the American College of Medical 
Genetics and Genomics,[11] variants detected by molecular 
testing can be classified into three major categories: (1) benign 
or likely benign variants: this category of variants is considered 
“negative genetic testing” and therefore requires additional 
molecular testing (to find the disease‑causing mutations that 
are missed by the current assay), clinical reevaluation, and 
testing  (skeletal muscle biopsy for immunohistochemistry 
and Western blot studies of dystrophin) or considering other 
types of muscular dystrophies with different causal genes; 
(2) pathogenic and likely pathogenic variants: this category of 
variants is considered “positive genetic testing” and sufficient 
to establish a molecular diagnosis; however, clinical correlation 
and segregation studies are strongly recommended; and (3) 
variants of unknown or uncertain significance: this category 

Table 1: Reputable mutations and reading‑frame databases for Duchenne muscular dystrophy gene

Mutation database Website
DMD gene homepage ‑ Global Variome shared LOVD https://databases.lovd.nl/shared/genes/DMD
LOVD exonic deletions/duplications reading‑frame checker https://www.dmd.nl/
DOVE: DMD open‑access Variant Explorer http://www.dmd.nl/DOVE
The DMD mutations database http://www.umd.be/DMD/W_DMD/index.html
ClinVar database https://www.ncbi.nlm.nih.gov/clinvar/?term=DMD[gene]
DMD: Duchenne muscular dystrophy, LOVD: Leiden open variation database, DOVE: DMD open-access variant explorer

of variants is considered “inconclusive genetic testing,” 
and therefore, require additional clinical  (see Category 1), 
biochemical, and segregation studies to exclude or prove 
pathogenicity [Figure 1].

There are several reputable and easy‑to‑use mutations 
databases that can be used by scientists and clinicians for 
curating, classifying, and reading‑frame checking, when 
interpreting a given variant in the DMD gene [Table 1].

Genotype–Phenotype Correlation
The phenotypic spectrum of the DMD variants follows 
the “open reading frame” rule, except for about  <  10% 
of the cases.[12] Variants that will alter the reading frame 
by the insertion, duplication, and deletion  (frameshift 
variants) of nucleotides will shift the reading frame and 
introduce a premature termination codon  (PTC), which 
will subject the mRNA to a selective degradation through 
the nonsense‑mediated decay  (NMD) pathway, most likely 
leading to absent or sometime truncated protein. The frameshift 
variants in the DMD gene are well correlated with and can 
be used to predict and differentiate Duchenne from BMD 
and also excluding the need for muscle biopsy in most of the 
cases.[13] In contrast, point (nontruncating) and splicing variants 
that do not alter the reading frame by insertion, duplication, 
and deletion  (in‑frame mutations) of three  (or multiples of 
three) nucleotides will result in shorter or longer protein with 

Figure  1: Molecular diagnostic algorithm for dystrophinopathies. 
WES: Whole‑exome sequencing, DMD: Duchenne muscular dystrophy, 
BMD: Becker muscular dystrophy, DCM: Dilated cardiomyopathy
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reduced function and; yet enough to correlate well with the 
milder BMD.[13]

Interestingly, in addition to variants in exon 1 of the DMD 
gene, variants in the promoter, required for muscle‑specific 
expression of dystrophin, are generally associated with 
DCM without affecting the skeletal muscle.[14‑17] This is 
because of the presence of actively expressed alternative, 
nonmuscle (central nervous system) promoters in the skeletal 
muscle (not cardiac muscle), and produces dystrophin enough 
for the skeletal muscle to be not affected by the impairment 
of the muscle‑specific promoter. However, other variants in 
other exons have been previously reported in patients with 
isolated DCM.[5,18,19]

Management
The management of dystrophin‑associated muscular 
dystrophies is mainly focused on the manifestations of the 
disease such as DCM, congestive heart failure, scoliosis, and 
muscle strength. The successful management also includes 
surveillance and prevention of secondary respiratory and 
cardiac and musculoskeletal complications. Given the 
lethality and significant health burden associated with 
dystrophinopathies, genetic counseling is imperative for 
families with a history of dystrophin‑associated muscular 
dystrophies to help them support the living affected members 
and avoid recurrences by utilizing the available options, such as 
preimplantation genetic diagnosis and prenatal genetic testing.

Therapies
Research and clinical studies are currently underway to 
find novel ways to repair or restore the dystrophin gene and 
protein, hoping to cure or mitigate BMD and DMD. Several 
approaches are taken to tackle different types of DMD variants. 
Basically, for the dystrophin to be restored or corrected, 
adeno‑associated viruses  (and other molecular delivery 
vehicles, such as exosomes) are used to deliver the dystrophin 
gene or dystrophin‑editing tools to correct or skip mutations.[20]

Several investigative therapies using exon skipping with 
antisense oligonucleotides or read through of PTCs to bypass 
or suppress NMD, correct the DMD reading frame, and restore 
dystrophin expression. Many of these investigative therapies 
have passed the preclinical studies and showed muscle 
benefits and improvements in clinical studies.[5,9] However, the 
need for the readministration of doses and lack of satisfying 
motor clinical benefits are limitations of such approaches. 
To address these limitations, gene repair using powerful 
gene‑editing tools such as clustered regularly interspaced 
short palindromic repeats (CRISPR) and CRISPR‑associated 
protein 9 (CRISPR‑Cas9) technology is needed to specifically 
and permanently target and correct the DMD variants inside 
the relevant cells, where dystrophin is mostly needed. Indeed, 
promising preclinical studies on mice and dogs models of 
DMD have been conducted and showed very encouraging 
curative results.[21‑23] For example, in four dogs, CRISPR gene 

editing was successful in restoring ~ 90% and 92% of normal 
dystrophin levels in skeletal and cardiac muscles, respectively. 
These levels were correlated with improved muscle histology 
and motor function.[24,25]

The progress in DMD gene editing has paved the way 
for upcoming clinical trials to use this technology to cure 
dystrophin‑associated muscular dystrophies in human. The 
large size of the DMD gene and safety and specificity of the 
gene editing and delivery tools are examples of obstacles ahead 
of the clinical trials that need to be addressed at the biological 
and technical levels.

Conclusion
The diagnosis, management, and treatment of dystrophinopathies 
should be coupled and correlated with genetic testing and 
findings. This approach, with the reducing cost of sequencing 
and genetic testing, will save cost, time, and provide proper 
management for timely intervention and counseling. Genetic 
testing for dystrophinopathies is not just a molecular 
confirmation but also a clinical need for precision medicine.
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