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INTRODUCTION

Legg-Calve-Perthes disease (LCPD) or coxa plana is an idiopathic avascular necrosis (AVN) of 
the femoral head epiphysis that occurs during childhood. It was first described independently 
in 1910 by Georg Perthes’, Arthur Legg, and Jacques Calvé.[1] LCPD is characterized by hip pain, 
restricted mobility, reduced physical activity, and disability typically leading to gait disturbance.[2]

It usually occurs in 3–12  years old children. The highest occurrence is at 5–7  years.[3] This 
condition is 4 times more common in boys.[4] LCPD is bilateral in 10–20% of affected cases. The 
incidence of LCPD varies in different geographical regions. Overall, analysis of data from 16 
countries has shown that the incidence of the disease ranges from 0.2 per 100,000 to 19.1 per 
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100,000.[2,5] A single study has reported a highest incidence 
of 29.0 per 100,000 individuals in the Faroe Islands of 
Denmark.[6] It has also been observed that children from 
families of low socioeconomic status may have high incidence 
and are, therefore, disproportionately affected.[2,7]

Key events in the development of LCPD can be divided into 
four distinct phases, including (a) subchondral fracture, 
(b) fragmentation, (c) re-ossification, and (d) healing 
with residual deformity. The first stage of this condition is 
characterized by a temporary disruption of the femoral capital 
epiphysis blood supply leading to infarction of subchondral 
cortical bone and capital epiphysis. As a result, growth of the 
ossific nucleus ceases and the infracted bone dies. This stage 
is termed necrosis.[8] Over time fragmentation takes place. 
In this process, the dead bone is reabsorbed, and new bone 
is formed.[9] In the re-ossification phase, the femoral head 
eventually heals, and the femoral epiphysis re-establishes due 
to the osteoblastic activity. However, during this process, the 
re-ossified femoral head may get enlarged or flattened, and 
deformity can develop due to reshaping because of weight 
bearing pressure on the weakened epiphysis during growth. 
This stage is called remodeling. Remodeling typically leads to 
disturbance in gait, mobility restriction, pain, and reduction 
in physical activity.[3,10,11]

The aim of this review article is to discuss the etiological 
factors underlying LCPD with special emphasis on the role 
of coagulation factors and mutations in the genes encoding 
those coagulation factors.

ETIOLOGY OF LCPD

The exact cause of LCPD is not known. A  large nationwide 
Swedish study found an association between suboptimal 
birth characteristics and breech presentation during delivery 
with the development of LCPD.[12] A strong correlation 
has also been described with maternal smoking as well as 
exposure to second-hand smoke.[13-15] Moreover, high rates of 
obesity and hypertension were also identified in a group of 
children having LCPD.[16]

The cause of the LCPD is largely unknown, though, many 
experimental and clinical studies provide support to the idea 
that the temporary disruption of the blood supply to the 
femoral head is a key event in the pathogenesis of the disease. 
Various diagnostic tools including selective angiography,[17] 
bone scintigraphy,[18] perfusion magnetic resonance 
imaging (MRI),[19] and the biopsy studies[20] from the early 
stages of the disease show clear indication of disruption 
of perfusion and bone damage consistent with AVN. The 
underlying cause may be disruption of supply of blood to 
the femoral epiphysis due to trauma, coagulopathy, or the 
use of steroids. Disruption of blood supply might be due to 
either thrombophilia (an increased tendency for thrombus 

formation) or hypofibrinolysis (a reduced ability for 
thrombolysis). The two processes have been suggested to play 
an essential role in the pathogenesis of osteonecrosis.[21-24] 

This is supported by the fact that thrombophilia and some 
forms of coagulopathy are present in approximately 50% and 
75% of the LCPD patients, respectively.[25]

Some authors refer to the injury and initial bone collapse 
as the cause of LCPD. Others have proposed intravascular 
thrombosis as a causative mechanism.[26] Recently, congenital 
growth hormone deficiency has also been associated with 
LCPD.[27]

PATHOBIOLOGY OF THE LCPD

The difficulty in getting clinical specimens from patients with 
LCPD is the key issue in understanding the pathophysiology 
of this condition. The current knowledge of the LCP disease 
process is based on the review of a histopathological findings 
of six femoral heads, a few reports of isolated necropsy, 
and findings from some surgical biopsies.[20,28-32] Briefly, 
the pathological process affects mainly the bony epiphysis, 
physis, and metaphysis with the covering articular cartilage. 
The articular cartilage changes include increased thickness 
in its deep layer with necrosis of the chondrocytes, cessation 
of the endochondral bone formation, a clear separation of 
articular cartilage from the subchondral bone, invasion of 
the cartilage by blood vessels, and new accessory ossification. 
In the epiphyseal bone, the necrosis of the marrow space 
and the trabecular bone, compression fracture of trabeculae, 
invasion of the fibro-vascular granulation tissue, necrotic 
bone resorption, and thickened trabeculae due to new bone 
formation have been reported. The physeal changes can often 
be seen in the anterior part of the femoral head, with focal 
areas of growth cartilage extending into the metaphysis. 
Premature growth arrest of the growth plate is seen only 
in 30% of LCPD patients, suggesting that the growth plate 
continues to function in the majority of the patients. Changes 
in metaphysis are usually observed during the initial stages of 
the disease.[32]

DIAGNOSIS OF LCPD

Imaging (radiographs and MRI) is used to diagnose LCPD. 
Recently, non-invasive magnetic resonance angiography 
has been shown to provide clear images of the epiphyseal 
blood supply of the femoral head in LCPD patients.[33] 

However, early radiographs can be normal. Imaging studies 
of the initial stages of the disease show epiphyseal cartilage 
hypertrophy, changes in the epiphysis, and subchondral 
fracture. In advanced stages of LCPD, flattening of the 
femoral head, fragmentation, and healing are evident in 
radiographs. In addition, MRI shows decreased femoral head 
perfusion and bone marrow changes.[3]
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MANAGEMENT OF LCPD

The main goal of the management for LCPD is to manage 
pain and symptoms.[34] Moreover, the aim is to promote self-
healing of the femoral head with minimal deformity and 
restoration of the hip range of motion.[34] This is achieved by 
maintaining the optimum local environment in and around 
the hip joint.[35,36] Repair and resorption take place, leading 
to remodeling and femoral head deformation.[9] Once 
children start to recover with the femoral head remodeling, 
symptomatic improvement may be observed in the hip joints.

Non-surgical, as well as surgical intervention, is required to 
manage the LCPD. Non-surgical management is preferred 
over surgical options. This type of management typically 
suffices in children with bone age below 6  years.[37] Almost 
90% of physicians refer LCPD children for physical therapy[38] 
with the aim to maintain hip joint mobility. The evidence 
base for this type of management is limited.[39] Non-surgical 
management options include orthosis, physical therapy 
such as stretching and strengthening regimes, walking aids, 
activity modification, or watchful waiting.[40,41] The selection 
of the type of non-surgical interventions is totally dependent 
on the treating physician. However, robust evidence 
regarding which kind of intervention is most effective for 
treating children with LCPD is lacking.[37,39] In a few cases, 
the hip deformity is severe and surgical containment may 
be necessary. Operative treatment is performed based on 
age, severity, and type of deformity. It can be femoral or 
pelvic osteotomies, varus or valgus femoral osteotomies, 
shelf procedure, hip arthroscopy, or hip arthrodiastasis.[42] In 
many cases, surgical intervention is usually considered after 
skeletal maturity in late adolescence.[43] Clinical guidelines 
for the management of LCPD are absent and currently, 
no standardized approach is there for selecting the right 
treatment.

GENETICS OF LCPD

LCPD is a complex disease, and the interaction of multiple 
environmental and genetic factors may play a role in the 
development of the disease. LCPD-associated factors include 
deprivation, the abnormal clotting mechanism, smoke 
exposure, and genetic predisposition.[4,44,45] Although most 
LCPD cases are isolated, multiple cases in families have also 
been reported, with some families having more than two 
affected individuals.[46-48] Several reports of siblings with 
similar features of disease have also been published.[49,50] 
Moreover, a study has shown the incidence of 2.5% in first-
degree relatives of LCPD index cases.[51] This incidence of 
LCPD in relatives is much higher (35  times) than that in 
the general population. These studies raise the possibility 
of a strong genetic component in the etiology of LCPD. 
Furthermore, the occurrence of LCPD-like hip changes 

in a few inherited dysplasias of the skeleton, such as 
trichorhinophalangeal syndrome[52-54] and Floating-Harbor 
syndrome,[55] also suggests the presence of major genetic 
defects underlying LCPD. In the succeeding section, genetic 
factors associated with the pathogenesis of LCPD will be 
discussed.

COAGULATION FACTORS AND LCPD

AVN develops, at least in part, as the end result of partially 
and temporarily disrupted blood flow to the femoral 
head.[22-24,45,56,57] Defects in coagulation factors have been 
considered as one of the possible causes of the impaired supply 
of blood to the femoral epiphysis.[58] The thrombophilia-
based hypothesis (thrombophilia followed by thrombotic 
venous occlusion of the femoral head) of LCPD is based on 
the notion that thrombosis selectively blocks the femoral head 
venous outflow, leading to increased intraosseous pressure, 
and subsequent AVN. Several studies have investigated 
coagulation abnormalities in LCPD patients. In a case–control 
study on the correlation between LCPD and coagulation 
defects, 19  patients out of 44  patients were found to have a 
protein-C deficiency and four patients out of 44 patients were 
found to have a protein-S deficiency.[56] Three fourths of the 
study patients had coagulation abnormalities. A  high risk 
of LCPD is statistically significant with decreasing levels of 
protein C and a high risk of LCPD is nearly significant with 
decreasing levels of protein S was found.[22] Therefore, it was 
concluded that the thrombophilic state due to abnormalities 
of the coagulation system plays a role in the LCPD.[22]

While some studies have found an increased rate 
of abnormalities of coagulation in the patients with 
LCPD,[21,22,56,59,60] others have not found any association at 
all.[61-64] The discrepancy might be due to some confounding 
factors, including a small sample size in some studies, the 
retrospective study design, use of suboptimal controls, and 
non-standardized range of laboratory values for coagulation 
factor level. As far as prospective studies are concerned, 
a random series of 50 consecutive LCPD patients did not 
show a difference in the prevalence of antithrombin III, 
protein-S, or protein-C deficiencies between the group 
of LCPD patients and the estimated frequency of disease 
in the population.[65] Recently a Cincinnati case–control 
study with 72 non-selected, consecutive LCPD patients 
and 197 healthy controls failed to find an increase in the 
prevalence of antithrombin-III, protein-S, and protein-C 
deficiencies.[66] Nevertheless, the Cincinnati study did find an 
increased prevalence of factor-V Leiden and anticardiolipin 
antibodies (IgG and IgM) in LCPD patients.

Mutations in genes involved in coagulation, including factor 
V Leiden (F5; OMIM 612309), prothrombin II (F2; OMIM 
176930), and methylenetetrahydrofolate reductase (MTHFR; 
OMIM 607093) have the tendency to cause vascular 
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occlusion. Below, studies describing mutations in F5, F2, and 
COL2A1 (OMIM 120140) genes and their association with 
the LCPD will be discussed.

F5 variants in LCPD

A correlation between thrombophilia (hypercoagulability 
or a prothrombotic state) and hypofibrinolysis (a decreased 
capacity to dissolve a blood clot) and AVN of the hip in adults 
have been reported[21,26] followed by detection of associations 
of the F5 gene (1q24.2) polymorphism (c.G1691A) and 
LCPD.[26,44,45,56] The same variant (c.G1691A) was found with 
high incidence in children with LCPD than in the general 
population.[59] Data from 12  case–control studies, a meta-
analysis consisting of 824 cases and 2033 controls, suggests 
that the F5 variant might increase the odds of LCPD around 
3  times. In such cases, the F5 mutant allele may explain 
around 3% of the cases of LCPD in childhood.[67] In a larger 
case–control study from the Netherlands, a higher prevalence 
of the F5 mutation was also observed.[25] Similarly, in another 
study, F5 variant was found more common in the patients 
than in the healthy individuals.[66] Moreover, a homozygous 
mutation in F5 has been associated with a more severe form 
of LCPD.[60] However, another case–control study from Israel 
failed to establish an association between F5 mutations and 
the LCPD.[57] Moreover, in terms of a prospective study, a 
random series of 50 consecutive LCPD patients did not show 
any difference in F5 mutation between the study group and 
the estimated population frequency.[65]

As far as families are concerned, the rate of LCPD is quite 
variable in the multi-generation transmission of F5 mutation. 
Out of 11 members of a family, with a heterozygous F5 variant 
(c.G1691A), only one was found to have LCPD features. 
LCPD was found in three out of ten members of another 
family, with either heterozygous or homozygous F5 variant 
(c.G1691A).[21] A large study has concluded that F5 variant is 
statistically significantly related to LCPD and screening of F5 
mutation in those children who are at-risk of LCPD might be 
useful in the future.[67]

Prothrombin gene (F2) variants in LCPD

A common genetic variant (c.G20210A) in the 3’ UTR 
(untranslated region) of the prothrombin gene (F2; 
11p11.2) is responsible for the high expression of the F2 
gene product. This variant has been found as the most 
prevalent predisposing genetic factor for elevated plasma 
prothrombin levels and consequently causes an increase in 
venous thrombosis.[68] In a larger case–control study from 
the Netherlands, a higher prevalence of the F2 mutation 
(c.G20210A) was observed.[25] However, multiple studies 
failed to replicate these findings. For instance, a German 
study did not identify a high rate of F2 variants in LCPD 

cases in comparison to the natural incidence.[69] Similarly, 
studies in other populations failed to find any association 
between F2 variants and LCPD.[64,66,70]

Type II collagen gene (COL2A1) variants and LCPD

Linkage analysis in three families, segregating idiopathic 
osteonecrosis in an autosomal dominant pattern, identified 
a 15cM interval on chromosome 12q13.6. Sequencing 
the potential candidate genes in the region detected a 
nonsynonymous variant (c.3665G>A; p.Gly1170Ser) in the 
COL2A1 gene in all 23 affected individuals of two families. 
In a third family, a different missense variant (c.2306G>A; 
p.Gly717Ser) was identified in the same gene.[71] The variant 
(c.3665G>A; p.Gly1170Ser) in the COL2A1 gene was also 
identified in a large Japanese family segregating autosomal 
dominant LCPD.[72] The Japanese family has multiple affected 
individuals, and the phenotypic expressivity of the disease 
was variable. COL2A1 mutations leading to helical glycine 
substitutions (p.Gly393Ser) have also been described in 
association with LCPD in other populations.[73] For instance, 
a Saudi family with multiple affected individuals has also 
been reported with COL2A1 mutation.[74] A heterozygous 
variant (c.1888 G>A, p. Gly630Ser) in exon 29 of a COL2A1 
has also been identified in a large four-generation Chinese 
family segregating LCPD.[75] In this study, 45 individuals 
from a four-generation pedigree were studied. Usually, 
individuals with COL2A1 mutations exhibit characteristic 
clinical features such as a small jaw, cleft palate, flat midface, 
and visual or hearing impairment. However, in the above-
described families, patients demonstrate a rare finding in 
which the disease is restricted to hip development, and 
features usually associated with COL2A1 mutations were 
missing.[76]

COL2A1 encodes type II collagen. Type II collagen is a large, 
homotrimeric protein with a triple-helical domain consisted 
of triplet repeat motifs Gly-X-Y. Variants identified in LCPD 
patients are in the triple-helical domain of the COL2A1 and are 
highly conserved in various organisms. Although both serine 
and glycine residues are polar, a large hydroxymethyl group is 
added to the center of the superhelix due to the substitution. 
This change is expected to disturb the local protein domain 
and loosen the superhelix, leading to the pathological 
changes observed in LCPD cases.[75] Radiographic changes 
similar to LCPD were observed in affected individuals of 
the aforementioned families.[72,76] It is hypothesized that 
the collagen variants lead to the weakening of the cartilage 
matrix[76] and thus subsequently lead to a compromise in the 
integrity of the blood vessels within the cartilage. It is worth 
mentioning that variants in COL2A1 only account for a small 
number of patients with bilateral familial LCPD. Screening 
of sporadic unilateral or non-familial bilateral cases of LCPD 
did not reveal COL2A1 variants.[57]
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CONCLUSION

LCPD is a rare hip condition of unknown etiology and is 
considered to be caused by temporary cessation of the blood 
flow to the femoral head resulting in venous occlusion and 
necrosis of the femoral head. The susceptibility to developing 
LCPD is determined by various environmental and genetic 
factors, while the nature and level of interaction between 
them are still not clear. Occurrence of multiple cases of 
LCPD in families and variability in the phenotype is well 
documented. Variations in genes that code for coagulation 
factors (F5 and F3) and structural components of bones 
(COL2A1) might have a role in the etiology of LCPD but, 
so far, no strong candidate genes underlying increased risk 
have been identified. In conclusion, there is still much to 
learn about the etiology and the pathogenesis of LCPD. The 
overall pathogenesis of the deformity of the femoral head 
is complex, with multiple underlying factors. Therefore, an 
effective treatment should take into account the mechanical 
as well as biological factors involved in the pathogenesis of 
LCPD.

Need for detailed clinical phenotyping

Several studies have discussed the etiology, epidemiology, 
natural history, radiographic classifications, and treatment 
outcomes of LCPD. However, still many aspects of the disease 
are not clear. Detailed clinical phenotyping and examination 
of synovial joint and articular cartilage are missing due to 
the unavailability of human patient samples. Further analysis 
of bone remodeling in model organisms such as mice is 
essential to describe the dynamic changes of bone phenotype 
over time.

Delineation of genetic and epigenetic factors

LCPD is 4 times more common in boys.[4] The only plausible 
explanation is that the LCPD causative genetic variant is 
located on X-chromosome in families where the condition 
is more common in males. In an isolated population of the 
Faroe Islands, high incidence (29 affected cases in 100,000 
individuals) and strong intrafamilial accumulation of the 
LCPD were found.[77] This has been attributed to a strong 
genetic drift or a huge founder effect. Although, the causative 
genetic variants underlying LCPD remain unknown, 
associations of LCPD with various factors have been 
described. The environmental factors may play a major role 
in the development of LCPD, and several factors (including 
inflammation, occlusion of vessels, hypercoagulability, 
maternal smoking, as well as exposure to smoke) may be 
associated with the occurrence of LCPD.[15,78,79] Most of the 
environmental factors have been shown to be controlled by 
epigenetic modifications.[80] In a preliminary finding, it has 
been shown that there is a significant change in genomic 

DNA methylation in children with LCPD.[80] However, the 
study was restricted to only LINE1 elements. Therefore, 
analysis of the genome-wide DNA methylation profile of 
LCPD patients is an appropriate first step to examine the 
epigenetic changes in the DNA of patients and its association 
with LCPD.

Since the genetic background is a determinant of LCPD and 
variants in a few genes (F5, F2, and COL2A1) have been 
associated with LCPD. However, almost all genetic studies on 
LCPD cases/families have focused on the analysis of a limited 
number of genes. Therefore, extensive genomics research is 
needed to detect polymorphic loci to reveal the pathogenesis. 
Moreover, a large-scale study on LCPD cases targeting 
the complete coding part of the DNA of LCPD patients is 
missing. Hence, the whole-exome sequencing strategy has the 
potential to identify a large effect variant underlying the LCPD 
phenotype. Detection of large-effect variants, haplotype, 
and analysis of the sequence of the targeted genes in LCPD 
cases can be used to detect carriers of mutant alleles before 
the onset of clinical features. This will allow the physician to 
initiate measures that may delay the progression of the disease. 
Furthermore, a deeper understanding of the associations 
between thrombophilia and LCPD might lead to improved 
treatments, both to shorten the acute phase of the childhood 
LCPD and probably reduce adult osteoarthritic sequelae.

The pathogenic process by which mutations in candidate 
genes confer risk of LCPD and the nature of the interaction 
between environmental and genetic factors are yet to be 
identified. The best approach forward for LCPD research, 
in our opinion, is a large scale combined efforts to perform 
single nucleotide polymorphism genotyping for copy 
number variation analysis and association analysis in 
sporadic cases, studies using exome sequencing followed by 
Sanger sequencing-based validation in families with multiple 
cases for the identification of potential sequence changes 
underlying LCPD. Moreover, whole-genome epigenetic 
studies to identify epigenetic signatures underlying LCPD 
phenotype might lead to interesting discoveries. In general, 
these studies are powerful enough to detect causative 
genes contributing to the LCPD phenotype. Detection and 
functional characterization of new genes for LCPD will 
certainly improve our understanding of the pathophysiology 
of LCPD and will help in delineating the molecular pathways 
involved in the development of osteonecrosis. Additionally, 
identification of the LCPD causative genes underlying will 
provide accurate genetic counseling for at-risk individuals, for 
prevention program development and better management.

Development of biological compounds for the treatment 
and biomarkers for diagnosis

Clinical features of LCPD were first reported almost a 
100  years ago still, there is no effective clinical therapy or 
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treatment available for LCPD patients. The past 20  years 
have seen an influx of clinically relevant biomolecules 
that have been used in the treatment of diseases of bones, 
including osteoporosis, rheumatoid arthritis, and juvenile 
idiopathic arthritis. It might be helpful to develop several 
promising therapeutic agents for LCPD and establish 
comprehensive guidelines for patients based on the 
phase of the LCPD. Inflammatory cytokines (IL-1β and 
TNF-α) have been shown to be involved in the LCPD 
pathogenesis.[81,82] Therapeutic strategies for these cytokines 
may be valid for the development of effective clinical 
therapy for LCPD. Bisphosphonate therapy has shown 
promising results in animals. This shows that possibility 
does exist for the pharmacological treatments of LCPD in 
the future.[1]

A variety of substances is known to release in the 
extracellular space as a result of tissue damage and repair 
mechanism. Therefore, evaluation of the association 
between LCPD with those substances implicated in the 
pathogenesis of LCPD in the extracellular space may help 
in the identification of diagnostic biomarkers. Moreover, 
variation in global DNA methylome may serve as epigenetic 
biomarkers for the early detection of LCPD. Furthermore, 
delineating the epigenetic mechanisms involved in LCPD 
may offer opportunities for diagnosis and treatment of the 
disease.
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